首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   107篇
  免费   9篇
  国内免费   2篇
化学   68篇
力学   5篇
数学   6篇
物理学   24篇
无线电   15篇
  2023年   3篇
  2022年   3篇
  2021年   8篇
  2020年   7篇
  2019年   5篇
  2018年   6篇
  2017年   5篇
  2016年   10篇
  2015年   7篇
  2014年   8篇
  2013年   11篇
  2012年   8篇
  2011年   10篇
  2010年   6篇
  2009年   5篇
  2008年   4篇
  2007年   3篇
  2006年   4篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  1996年   1篇
排序方式: 共有118条查询结果,搜索用时 10 毫秒
1.
Oxygen-redox-based-layered cathode materials are of great importance in realizing high-energy-density sodium-ion batteries (SIBs) that can satisfy the demands of next-generation energy storage technologies. However, Mn-based-layered materials (P2-type Na-poor Nay[AxMn1−x]O2, where A = alkali ions) still suffer from poor reversibility during oxygen-redox reactions and low conductivity. In this work, the dual Li and Co replacement is investigated in P2-type-layered NaxMnO2. Experimentally and theoretically, it is demonstrated that the efficacy of the dual Li and Co replacement in Na0.6[Li0.15Co0.15Mn0.7]O2 is that it improves the structural and cycling stability despite the reversible Li migration from the transition metal layer during de-/sodiation. Operando X-ray diffraction and ex situ neutron diffraction analysis prove that the material maintains a P2-type structure during the entire range of Na+ extraction and insertion with a small volume change of ≈4.3%. In Na0.6[Li0.15Co0.15Mn0.7]O2, the reversible electrochemical activity of Co3+/Co4+, Mn3+/Mn4+, and O2-/(O2)n- redox is identified as a reliable mechanism for the remarkable stable electrochemical performance. From a broader perspective, this study highlights a possible design roadmap for developing cathode materials with optimized cationic and anionic activities and excellent structural stabilities for SIBs.  相似文献   
2.
Physical and chemical strategies that place designed molecules in spatially separated regions of surfactant-templated mesostructured silicate thin films are used to prepare films containing rhodamine 6G (R6G), lanthanide complexes, and both simultaneously. Fluorescence and photoexcitation spectra of R6G in amorphous and structured thin films show that it is located inside the surfactant micelles of structured thin films. A silylated ligand that binds lanthanides condenses to form part of the silica framework and causes the lanthanide to localize in the silica. Luminescence and photoexcitation spectra show that energy transfer from the metal complex to R6G occurs in the films. R6G quenches Tb emission in a concentration-dependent manner. Energy transfer efficiency is calculated using the Tb luminescence lifetime, and this quantity is used to calculate the distance between Tb and R6G with the aid of Forster theory.  相似文献   
3.
Because failures in lead-free solder joints occur at locations other than the most highly shear-strained regions, reliability prediction is challenging. To gain physical understanding of this phenomenon, physically based understanding of how elastic and plastic deformation anisotropy affect microstructural evolution during thermomechanical cycling is necessary. Upon solidification, SAC305 (Sn-3.0Ag-0.5Cu) solder joints are usually single or tricrystals. The evolution of microstructures and properties is characterized statistically using optical and orientation imaging microscopy. In situ synchrotron x-ray measurements during thermal cycling are used to examine how crystal orientation and thermal cycling history change strain history. Extensive characterization of a low-stress plastic ball grid array (PBGA) package design at different stages of cycling history is compared with preliminary experiments using higher-stress package designs. With time and thermal history, microstructural evolution occurs mostly from continuous recrystallization and particle coarsening that is unique to each joint, because of the specific interaction between local thermal and displacement boundary conditions and the strong anisotropic elastic, plastic, expansion, and diffusional properties of Sn crystals. The rate of development of recrystallized microstructures is a strong function of strain and aging. Cracks form at recrystallized (random) boundaries, and then percolate through recrystallized regions. Complications arising from electromigration and corrosion are also considered.  相似文献   
4.
In this study, trimetallic catalysts were prepared via the co-precipitation and impregnation methods. In order to investigate the effect of impregnation on the catalytic activity and crystallite size, a trimetallic catalyst, Fe—Ni—Ce, was prepared through the co-precipitation method in one set of experiments, and cerium was impregnated with the Ni—Fe mixture in the final stage of the preparation in another set. Fourier transform infrared spectroscopy was employed to confirm the formation of trimetallic catalysts and the success of the impregnation method. The Brunauer-Emmett-Teller nitrogen adsorption isotherm exhibits a high specific surface area (approximately 39 m2 g?1) for the nanoparticles obtained by the impregnation method. The crystallography and morphology of the trimetallic catalysts thus prepared were characterised by X-ray diffraction and scanning electron microscopy. UV-VIS spectroscopy and methylene blue dye degradation tests were also performed to investigate the catalytic activity of the synthesised catalysts. The crystalline size was found to be smaller for the catalysts prepared by the impregnation method. In addition, the samples synthesised using the cerium impregnation method showed superior activity in the methylene blue dye degradation test. The effect of the catalyst dosage on dye degradation, as well as the effect of the initial dye concentration on the catalyst activity, was also studied for both methods.  相似文献   
5.
Motivated by experimental studies of two‐dimensional Ostwald ripening on Au(100) electrodes in chlorine‐containing electrolytes, we have studied diffusion processes using density functional theory. We find that chlorine has a propensity to temporary form AuCl complexes, which diffuse significantly faster than gold adatoms. With and without chlorine, the lowest activation energy is found for the exchange mechanism. Chlorine furthermore reduces the activation energy for the detachment from kink sites. Kinetic Monte Carlo simulations were performed on the basis of extensive density functional theory calculations. The island‐decay rate obtained from these Monte Carlo simulations, as well as the decay rate obtained from the theoretical activation energies and frequency factors when inserted into analytical solutions for Ostwald ripening, are in agreement with experimental island‐decay rates in chlorine‐containing electrolytes.  相似文献   
6.
7.
Methods of making mesostructured sol-gel silicate thin films containing two different molecules deliberately placed in two different spatially separated regions in a one-step, one-pot preparation are developed and demonstrated. When the structure-directing agent is the surfactant cetyltrimethylammonium bromide, the structure is 2-D hexagonal with lattice spacings between 31.6 and 42.1 angstroms depending on the dopant molecules and their concentrations. The three general strategies that are used to place the molecules are philicity (like dissolves like), bonding, and bifunctionality. These strategies take advantage of the different chemical and physical properties of the regions of the films. These regions are the inorganic silicate framework, the hydrophobic organic interior of the micelles, and the ionic interface between them. Luminescent molecules that possess the physical and chemical properties appropriate for the desired strategies are chosen. Lanthanide and ruthenium complexes with condensable trialkoxysilane groups are incorporated into the silicate framework. 1,4-Naphthoquinone, pyrene, rhodamine 6G and coumarin 540A, and lanthanides with no condensable trialkoxysilanes occupy the hydrophobic core of micelles by virtue of their hydrophobicity. The locations of the molecules are determined by luminescence spectroscopy and by luminescence lifetime measurements. In all cases, the long-range order templated into the thin film is verified by X-ray diffraction. The simultaneous placement of two molecules in the structured film and the maintenance of long-range order require a delicate balance among film preparation methodology, design of the molecules to be incorporated in specific regions, and concentrations of all of the species.  相似文献   
8.
The fission fragment mass-yields are evaluated for pre-actinide and actinide isotopes using a systematic statistical scission point model. The total potential energy of the fissioning systems at the scission point is presented in approximate relations as functions of mass numbers,deformation parameters and the temperature of complementary fission fragments. The collective temperature, Tcoll, and the temperature of fission fragments, Ti, are separated and the effect of collective temperature on mass yields results is investigated. The fragment temperature has been calculated with the generalized superfluid model. The sum of deformation parameters of complementary fission fragments has been obtained by fitting the calculated results with the experimental data. To investigate the transitions between symmetric and asymmetric modes mass yields for pre-actinide and heavy actinides are calculated with this model. The transition from asymmetric to symmetric fission is well reproduced using this systematic statistical scission point model. The calculated results are in good agreement with the experimental data with Tcoll= 2 Me V at intermediate excitation energy and with T_(coll)= 1MeV for spontaneous fission.Despite the Langevin model, in the scission point model, a constraint on the deformation parameters of fission fragments has little effect on the results of the mass yield.  相似文献   
9.
Wound dressings have experienced continuous and significant changes since the ancient times. The development starts with the use of natural materials to simply cover the wounds to the materials of the present time that could be specially made to exhibit various extraordinary functions. The modern bandage materials made of electrospun biopolymers contain various active compounds that are beneficial to the healing of wounds. These materials are fibrous in nature, with the size of fibers segments ranging from tens of nanometers to micrometers. With the right choices of biopolymers used for these fibrous materials, they could enhance the healing of wounds significantly compared with the conventional fibrous dressing materials, such as gauze. These bandages could be made such that they contain bioactive ingredients, such as antimicrobial, antibacterial, and anti‐inflammatory agents, which could be released to the wounds enhancing their healing. In an active wound dressing (AWD), the main purpose is to control the biochemical states of a wound in order to aid its healing process. This review provides an overview of different types of wounds, effective parameters in wound healing and different types of wound dressing materials with a special emphasis paid to those prepared by electrospinning. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
10.
A novel net analyte signal standard addition method (NASSAM) was used for simultaneous determination of the drugs anthazoline and naphazoline. The NASSAM can be applied for determination of analytes in the presence of known interferents. The proposed method is used to eliminate the calibration and prediction steps of multivariate calibration methods; the determination is carried out in a single step for each analyte. The accuracy of the predictions against the H-point standard addition method is independent of the shape of the analyte and interferent spectra. The net analyte signal concept was also used to calculate multivariate analytical figures of merit, such as LOD, selectivity, and sensitivity. The method was successfully applied to the simultaneous determination of anthazoline and naphazoline in a commercial eye drop sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号