首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11407篇
  免费   627篇
  国内免费   137篇
化学   5666篇
晶体学   62篇
力学   244篇
综合类   10篇
数学   908篇
物理学   1968篇
无线电   3313篇
  2023年   110篇
  2022年   121篇
  2021年   240篇
  2020年   230篇
  2019年   197篇
  2018年   216篇
  2017年   196篇
  2016年   318篇
  2015年   285篇
  2014年   366篇
  2013年   665篇
  2012年   679篇
  2011年   719篇
  2010年   486篇
  2009年   489篇
  2008年   706篇
  2007年   695篇
  2006年   646篇
  2005年   629篇
  2004年   559篇
  2003年   469篇
  2002年   449篇
  2001年   305篇
  2000年   314篇
  1999年   190篇
  1998年   171篇
  1997年   154篇
  1996年   162篇
  1995年   138篇
  1994年   135篇
  1993年   144篇
  1992年   115篇
  1991年   65篇
  1990年   84篇
  1989年   58篇
  1988年   47篇
  1987年   49篇
  1986年   32篇
  1985年   42篇
  1984年   45篇
  1983年   26篇
  1982年   35篇
  1981年   43篇
  1980年   35篇
  1979年   43篇
  1978年   39篇
  1977年   36篇
  1976年   31篇
  1975年   30篇
  1974年   27篇
排序方式: 共有10000条查询结果,搜索用时 965 毫秒
1.
A numerical model was developed and validated to investigate the fluid–structure interactions between fully developed pipe flow and core–shell-structured microcapsule in a microchannel. Different flow rates and microcapsule shell thicknesses were considered. A sixth-order rotational symmetric distribution of von Mises stress over the microcapsule shell can be observed on the microcapsule with a thinner shell configuration, especially at higher flow rate conditions. It is also observed that when being carried along in a fully developed pipe flow, the microcapsule with a thinner shell tends to accumulate stress at a higher rate compared to that with a thicker shell. In general, for the same microcapsule configuration, higher flow velocity would induce a higher stress level over the microcapsule shell. The deformation gradient was used to capture the microcapsule's deformation in the present study. The effect of Young's modulus on the microcapsule shell on the microcapsule deformation was investigated as well. Our findings will shed light on the understanding of the stability of core–shell-structured microcapsule when subjected to flow-induced shear stress in a microfluidic system, enabling a more exquisite control over the breakup dynamics of drug-loaded microcapsule for biomedical applications.  相似文献   
2.
A class of acceptor–donor–acceptor chromophoric small-molecule non-fullerene acceptors, 1–4, with difluoroboron(iii) β-diketonate (BF2bdk) as the electron-accepting moiety has been developed. Through the variation of the central donor unit and the modification on the peripheral substituents of the terminal BF2bdk acceptor unit, their photophysical and electrochemical properties have been systematically studied. Taking advantage of their low-lying lowest unoccupied molecular orbital energy levels (from −3.65 to −3.72 eV) and relatively high electron mobility (7.49 × 10−4 cm2 V−1 s−1), these BF2bdk-based compounds have been employed as non-fullerene acceptors in organic solar cells with maximum power conversion efficiencies of up to 4.31%. Moreover, bistable resistive memory characteristics with charge-trapping mechanisms have been demonstrated in these BF2bdk-based compounds. This work not only demonstrates for the first time the use of a boron(iii) β-diketonate unit in constructing non-fullerene acceptors, but also provides more insights into designing organic materials with multi-functional properties.

Boron(iii) β-diketonates have been demonstrated to serve as multi-functional materials in NFA-based OPVs and organic resistive memories.  相似文献   
3.
4.
Oral microbes have the capacity to spread throughout the gastrointestinal system and are strongly associated with multiple diseases. Given that tonsils are located between the oral cavity and the laryngopharynx at the gateway of the alimentary and respiratory tracts, tonsillar tissue may also be affected by microbiota from both the oral cavity (saliva) and the alimentary tract. Here, we analyzed the distribution and association of the microbial communities in the saliva and tonsils of Korean children subjected to tonsillectomy because of tonsil hyperplasia (n = 29). The microbiome profiles of saliva and tonsils were established via 16S rRNA gene sequencing. Based on the alpha diversity indices, the microbial communities of the two groups showed high similarities. According to Spearman’s ranking correlation analysis, the distribution of Treponema, the causative bacterium of periodontitis, in saliva and tonsils was found to have a significant positive correlation. Two representative microbes, Prevotella in saliva and Alloprevotella in tonsils, were negatively correlated, while Treponema 2 showed a strong positive correlation between saliva and tonsils. Taken together, strong similarities in the microbial communities of the tonsils and saliva are evident in terms of diversity and composition. The saliva microbiome is expected to significantly affect the tonsil microbiome. Furthermore, we suggest that our study creates an opportunity for tonsillar microbiome research to facilitate the development of novel microbiome-based therapeutic strategies.Subject terms: Comparative genomics, Metagenomics  相似文献   
5.
The nonlinear frequency response analysis (NFRA) can be seen as an extension of electrochemical impedance spectroscopy. NFRA gives a full and detailed representation of the system response and can establish a connection between model parameters and the experimentally observed phenomena. In this article, different theoretical NFRA approaches and the most recent application examples are discussed. A simple electrochemical example is used to showcase the benefits and disadvantages of analyzing the system response by using different approaches. In addition, it was shown how to extract experimental harmonic values and analyze them.  相似文献   
6.
Microtubule dynamics is a target for many chemotherapeutic drugs. In order to understand the biochemical effects of paclitaxel on the GTPase activity of tubulin, the status of guanine nucleotides in microtubules was investigated by 31P cross‐polarization magic angle spinning (CPMAS) NMR. Microtubules were freshly prepared in vitro in the presence of paclitaxel and then lyophilized in sucrose buffer for solid‐state NMR experiments. A 31P CPMAS NMR spectrum with the SNR of 25 was successfully acquired from the lyophilized microtubule sample. The broadness of the 31P spectral lines in the spectrum indicates that the molecular environments around the guanine nucleotides inside tubulin may not be as crystalline as reported by many diffraction studies. Deconvolution of the spectrum into four spectral components was carried out in comparison with the 31P NMR spectra obtained from five control samples. The spectral analysis suggested that about 13% of the nucleotides were present as GTP and 37% as GDP in the β‐tubulin (E‐site) of the microtubules. It was found that most of the GDPs were present as GDP‐Pi complex in the microtubules, which seems to be one of the effects of paclitaxel binding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
7.
A device able to electrokinetically concentrate cationic samples has many potential medical and industrial applications, but until now has remained undeveloped due to the lack of a commercial anion-permselective material leading to a prohibitively complex fabrication procedure. Herein, a novel multiscale-porous anion exchange membrane (MP-AEM) that enables the convenient and scalable electrokinetic concentration of cationic species is proposed. A mechanically enhanced multiscale-porous structure with a solid framework is realized by adopting polyester resin as an additive to overcome the intrinsic limitations of the AEM material. The scalable MP-AEM-embedded electrokinetic concentrator is devised based on the peculiar properties of the MP-AEM that for allow both ion and fluid transport. With the MP-AEM, the concentrator is fabricated in a highly streamlined manner consisting only of a simple insertion and assembly. The concentration performance of the MP-AEM-embedded electrokinetic concentrator is demonstrated with a positively charged fluorescent dye and a fluorescein-labeled protein, and the results show enrichment factors of 250 and 500, respectively. The MP-AEM makes cationic electrokinetic concentration more accessible and scalable, thereby enabling further progress in a wide range of fields.  相似文献   
8.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号