首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   425篇
  免费   39篇
  国内免费   1篇
化学   258篇
晶体学   2篇
力学   18篇
数学   16篇
物理学   65篇
无线电   106篇
  2024年   2篇
  2023年   10篇
  2022年   15篇
  2021年   23篇
  2020年   28篇
  2019年   21篇
  2018年   26篇
  2017年   19篇
  2016年   26篇
  2015年   16篇
  2014年   34篇
  2013年   34篇
  2012年   45篇
  2011年   43篇
  2010年   27篇
  2009年   13篇
  2008年   14篇
  2007年   25篇
  2006年   11篇
  2005年   8篇
  2004年   8篇
  2003年   2篇
  2001年   1篇
  2000年   3篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1970年   1篇
  1969年   1篇
  1968年   2篇
  1966年   1篇
  1965年   3篇
排序方式: 共有465条查询结果,搜索用时 31 毫秒
1.
Silica@copper (SiO2@Cu) core–shell nanoparticles were synthesized and well characterized by XRD, TEM, AFM, XPS, UV/Vis, TGA–MS, and ICP–AES techniques. The synthesized SiO2@Cu core–shell nanoparticles were employed as catalysts for the conjugate addition of amines to α,β‐unsaturated compounds in water to obtain β‐amino carbonyl compounds in excellent yields in shorter reaction times. Furthermore, the catalyst works well for hetero‐Michael addition reactions of heteroatom nucleophiles such as thiols to α,β‐unsaturated compounds. As the reaction is performed in water, it allows for easy recycling of the catalyst with consistent activity.  相似文献   
2.
Abstract

Few conversions cannot take place with ground-state reactions even with the help of a catalyst, therefore they are made to occur under photochemical conditions. The transfer of electrons took place even with the photochemical excitement of one molecule where redox reaction cannot occur at the ground state. The ground-state reactions resulted in the formation of side products. The substrates did not require any sort of chemical activation for C–N bond construction in the course of photochemical reactions. The source of energy; light has always been the interest of researchers in order to induce chemical reactions ever since the starting of scientific chemistry. The present review encloses the chemistry of photochemical transformations with a focus on their synthetic uses. The organic photochemical reactions prevent the polluting or harmful reagents thus, provides a possibility for sustainable procedures as well as green chemistry. This review article displays the formation of numerous of five-membered fused nitrogen-heterocyclic compounds.  相似文献   
3.
Because Nitrosomonas europaea contains ammonia-oxidizing enzyme, nitrite reductase, and nitrous oxide reductase, the conversion of ammonia to dinitrogen was tried with different reaction conditions. In aerobic reaction conditions, ammonium was converted to nitrite (NO 2 ), while under oxygen-limiting or oxygen-free conditions, NO 2 -N formed from ammonia oxidation by N. europaea was reduced to N2O and dinitrogen with 22% conversion. During denitrification, optimal pH for the production of N2O and dinitrogen was found to be 7.0–8.0. Dinitrogen was not produced in acidic pH<7.0. A low partial oxygen pressure as well as oxygen-free conditions are favorable for high production of dinitrogen.  相似文献   
4.
5.
Abstract

One of the highly emerging and an important aspect of organic chemistry is the metal catalyzed synthesis of heterocycles. The methods used earlier for the synthesis of heterocycles were significant in the organic synthesis and developing cost-effective, improved and facial methods were beneficial to construct the complex architectures. For the both stereoselective and regioselective synthesis of six-membered nitrogen containing heterocycles, cyclic reactions that are Ag-mediated have known to be very efficient. The present review covers the applications of Ag in the formation of six-membered nitrogen containing heterocycles.  相似文献   
6.
7.
Research on Chemical Intermediates - Heterocyclic organic molecules containing oxygen, nitrogen or sulfur are generally used as inhibitors for corrosion protection of copper. These compounds form...  相似文献   
8.
9.
Structural Chemistry - The hydrogen-bonded complexes formed between proline and amides have been investigated completely by the use of computational methods such as Atoms In Molecules (AIM),...  相似文献   
10.
Two vanadium (IV) complexes [VIVO(Haeae-sal)(MeOH)]+ ( 1 ) and [VIVO(Haeae-hyap)(MeOH)]+ ( 2 ) were prepared by reacting [VO(acac)2] with ligands [H2aeae-sal] ( I ) and [H2aeae-hyap] ( II ) respectively. Condensation of 2-(2-aminoethylamino)ethanol with salicylaldehyde and 2-hydroxyacetophenone produces the ligands ( I ) and ( II ) respectively. Both vanadium complexes 1 and 2 are sensitive towards aerial oxygen in solution and rapidly convert into vanadium(V) dioxido species. Vanadium(V) dioxido species crystalizes as the dimeric form in the solid-state. Single-crystal XRD analysis suggests octahedral geometry around each vanadium center in the solid-state. To access the benefits of heterogeneous catalysis, vanadium(V) dioxido complexes were anchored into the polymeric chain of chloromethylated polystyrene. All the synthesized neat and supported vanadium complexes have been studied by a number of techniques to confirm their structural and functional properties. Bromoperoxidase activity of the synthesized vanadium(V) dioxido complexes 3 and 4 was examined by carrying out oxidative bromination of salicylaldehyde and oxidation of thioanisole. In the presence of hydrogen peroxide, 3 shows 94.4% conversion ( TOF value of 2.739 × 102 h−1) and 4 exhibits 79.0% conversion (TOF value of 2.403 × 102 h−1) for the oxidative bromination of salicylaldehyde where 5-bromosalicylaldehyde appears as the major product. Catalysts 3 and 4 also efficiently catalyze the oxidation of thioanisole in the presence of hydrogen peroxide where sulfoxide is observed as the major product. Covalent attachment of neat catalysts 3 and 4 into the polymer chain enhances substrate conversion (%) and their catalytic efficiency increases many folds, both in the oxidative bromination and oxidation of thioether. Polymer supported catalysts 5 displayed 98.8% conversion with a TOF value of 1.127 × 104 h−1 whereas catalyst 6 showed 95.7% conversion with a TOF value of 4.675 × 103 h−1 for the oxidative bromination of salicylaldehyde. These TOF values are the highest among the supported vanadium catalysts available in the literature for the oxidative bromination of salicylaldehyde.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号