首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   437篇
  免费   28篇
  国内免费   1篇
化学   197篇
晶体学   6篇
力学   7篇
数学   15篇
物理学   95篇
无线电   146篇
  2024年   1篇
  2023年   2篇
  2022年   7篇
  2021年   15篇
  2020年   10篇
  2019年   14篇
  2018年   10篇
  2017年   13篇
  2016年   23篇
  2015年   17篇
  2014年   12篇
  2013年   26篇
  2012年   22篇
  2011年   41篇
  2010年   23篇
  2009年   14篇
  2008年   21篇
  2007年   24篇
  2006年   26篇
  2005年   21篇
  2004年   24篇
  2003年   9篇
  2002年   17篇
  2001年   3篇
  2000年   7篇
  1999年   14篇
  1998年   9篇
  1997年   4篇
  1996年   8篇
  1995年   4篇
  1994年   2篇
  1993年   2篇
  1991年   1篇
  1990年   2篇
  1987年   1篇
  1986年   1篇
  1984年   4篇
  1983年   1篇
  1982年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   2篇
  1972年   1篇
  1958年   2篇
排序方式: 共有466条查询结果,搜索用时 218 毫秒
1.
The dependence of the beam propagation factor (M 2 parameter) with the absorbed pump power in the case of monolithic microchip laser under face-cooled configuration is extensively studied. Our investigations show that the M 2 parameter is related to the absorbed pump power through two parameters (α and β) whose values depend on the laser material properties and laser configuration. We have shown that one parameter arises due to the oscillation of higher order modes in the microchip cavity and the other parameter accounts for the spherical aberration associated with the thermal lens induced by the pump beam. Such dependency of M 2 parameter with the absorbed pump power is experimentally verified for a face-cooled monolithic microchip laser based on Nd3+ -doped GdVO4 crystal and the values of α and β parameters were estimated from the experimentally measured data points.  相似文献   
2.
This paper proposes a new LDMOSFET structure with a trenched sinker for high‐power RF amplifiers. Using a low‐temperature, deep‐trench technology, we succeeded in drastically shrinking the sinker area to one‐third the size of the conventional diffusion‐type structure. The RF performance of the proposed device with a channel width of 5 mm showed a small signal gain of 16.5 dB and a maximum peak power of 32 dBm with a power‐added efficiency of 25% at 2 GHz. Furthermore, the trench sinker, which was applied to the guard ring to suppress coupling between inductors, showed an excellent blocking performance below ?40 dB at a frequency of up to 20 GHz. These results confirm that the proposed trenched sinker should be an effective technology both as a compact sinker for RF power devices and as a guard ring against coupling.  相似文献   
3.
Heavy ion irradiation in the electronic stopping power region induces macroscopic dimensional change in metallic glasses and introduces magnetic anisotropy in some magnetic materials. The present work is on the irradiation study of ferromagnetic metallic glasses, where both dimensional change and modification of magnetic anisotropy are expected. Magnetic anisotropy was measured using Mössbauer spectroscopy of virgin and irradiated Fe40Ni40B20 and Fe40Ni38Mo4B18 metallic glass ribbons. 90 MeV 127I beam was used for the irradiations. Irradiation doses were 5×1013 and 7.5×1013 ions/cm2. The relative intensity ratios D 23 of the second and third lines of the Mössbauer spectra were measured to determine the magnetic anisotropy. The virgin samples of both the materials display in-plane magnetic anisotropy, i.e., the spins are oriented parallel to the ribbon plane. Irradiation is found to cause reduction in magnetic anisotropy. Near-complete randomization of magnetic moments is observed at high irradiation doses. Correlation is found between the residual stresses introduced by ion irradiation and the change in magnetic anisotropy.  相似文献   
4.
We propose and demonstrate a wavelength-division-multiplexed passive optical network by employing double-contact Fabry-Perot laser diodes (F-P LDs) without a seed light injection. To avoid the high mode partition noise at low frequency, we use a binary phase-shift keying as a modulation format at a low relative intensity noise window. An error-free transmission is achieved by compensating a lasing envelope shift due to temperature variation with the double-contact F-P LD.  相似文献   
5.
The tau protein is a highly soluble and natively unfolded protein. Under pathological conditions, tau undergoes multiple post-translational modifications (PTMs) and conformational changes to form insoluble filaments, which are the proteinaceous signatures of tauopathies. To dissect the crosstalk among tau PTMs during the aggregation process, we phosphorylated and ubiquitylated recombinant tau in vitro using GSK3β and CHIP, respectively. The resulting phospho–ub-tau contained conventional polyubiquitin chains with lysine 48 linkages, sufficient for proteasomal degradation, whereas unphosphorylated ub-tau species retained only one–three ubiquitin moieties. Mass-spectrometric analysis of in vitro reconstituted phospho–ub-tau revealed seven additional ubiquitylation sites, some of which are known to stabilize tau protofilament stacking in the human brain with tauopathy. When the ubiquitylation reaction was prolonged, phospho–ub-tau transformed into insoluble hyperubiquitylated tau species featuring fibrillar morphology and in vitro seeding activity. We developed a small-molecule inhibitor of CHIP through biophysical screening; this effectively suppressed tau ubiquitylation in vitro and delayed its aggregation in cultured cells including primary cultured neurons. Our biochemical findings point to a “multiple-hit model,” where sequential events of tau phosphorylation and hyperubiquitylation function as a key driver of the fibrillization process, thus indicating that targeting tau ubiquitylation may be an effective strategy to alleviate the course of tauopathies.

Multiple-hit model for tau aggregation, where sequential events of tau phosphorylation and hyperubiquitylation function as a key driver of the fibrillization process.  相似文献   
6.
We have developed a double-matching method and an artificial visual neural network technique for lung nodule detection. This neural network technique is generally applicable to the recognition of medical image pattern in gray scale imaging. The structure of the artificial neural net is a simplified network structure of human vision. The fundamental operation of the artificial neural network is local two-dimensional convolution rather than full connection with weighted multiplication. Weighting coefficients of the convolution kernels are formed by the neural network through backpropagated training. In addition, we modeled radiologists' reading procedures in order to instruct the artificial neural network to recognize the image patterns predefined and those of interest to experts in radiology. We have tested this method for lung nodule detection. The performance studies have shown the potential use of this technique in a clinical setting. This program first performed an initial nodule search with high sensitivity in detecting round objects using a sphere template double-matching technique. The artificial convolution neural network acted as a final classifier to determine whether the suspected image block contains a lung nodule. The total processing time for the automatic detection of lung nodules using both prescan and convolution neural network evaluation was about 15 seconds in a DEC Alpha workstation.  相似文献   
7.
For the development of all-solid-state lithium metal batteries (LMBs), a high-porous silica aerogel (SA)-reinforced single-Li+ conducting nanocomposite polymer electrolyte (NPE) is prepared via two-step selective functionalization. The mesoporous SA is introduced as a mechanical framework for NPE as well as a channel for fast lithium cation migration. Two types of monomers containing weak-binding imide anions and Li+ cations are synthesized and used to prepare NPEs, where these monomers are grafted in SA to produce SA-based NPEs (SANPEs) as ionomer-in-framework. This hybrid SANPE exhibits high ionic conductivities (≈10−3 S cm−1), high modulus (≈105 Pa), high lithium transference number (0.84), and wide electrochemical window (>4.8 V). The resultant SANPE in the lithium symmetric cell possesses long-term cyclic stability without short-circuiting over 800 h under 0.2 mA cm−2. Furthermore, the LiFePO4|SANPE|Li solid-state batteries present a high discharge capacity of 167 mAh g−1 at 0.1 C, good rate capability up to 1 C, wide operating temperatures (from −10 to 40 °C), and a stable cycling performance with 97% capacity retention and 100% coulombic efficiency after 75 cycles at 1 C and 25 °C. The SANPE demonstrates a new design principle for solid-state electrolytes, allowing for a perfect complex between inorganic silica and organic polymer, for high-energy-density LMBs.  相似文献   
8.
The authors have developed a neural-digital computer-aided diagnosis system, based on a parameterized two-level convolution neural network (CNN) architecture and on a special multilabel output encoding procedure. The developed architecture was trained, tested, and evaluated specifically on the problem of diagnosis of lung cancer nodules found on digitized chest radiographs. The system performs automatic "suspect" localization, feature extraction, and diagnosis of a particular pattern-class aimed at a high degree of "true-positive fraction" detection and low "false-positive fraction" detection. In this paper, the authors aim at the presentation of the two-level neural classification method in reducing false-positives in their system. They employed receiver operating characteristics (ROC) method with the area under the ROC curve (A(z)) as the performance index to evaluate all the simulation results. The two-level CNN showed superior performance (A(z)=0.93) to the single-level CNN (A(z)=0.85). The proposed two-level CNN architecture is proven to be promising and to be extensible, problem-independent, and therefore, applicable to other medical or difficult diagnostic tasks in two-dimensional (2-D) image environments.  相似文献   
9.
10.
Gamma-radiation grafting of vinyl ether of monoethanolamine and vinyl ether of ethyleneglycol (VEEG) on polyethylene films has been studied from binary monomer mixtures. The effect of co-monomer composition and total exposure radiation dose on the grafting process is investigated. A combination of potentiometric and gravimetric techniques is applied to determine the grafting degree of each monomer in the final graft copolymer. The presence of more active monomer VEEG in the mixture was found to enhance the grafting of both monomers because the increasing of copolymerization rate which in turn increases the total grafting degree. The modification of the hydrophilic properties of the graft copolymer is studied by examining the grafted films for water- and copper (II) ions uptake.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号