首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   2篇
化学   7篇
数学   1篇
物理学   1篇
无线电   10篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   1篇
  2009年   1篇
  1995年   2篇
  1993年   3篇
  1989年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
2.
The growth issues known to effect the quality of GaN organometallic vapor phase epitaxial films are reviewed and the best 300Kmobility vs electron concentration data are discussed. The data probably represent transport properties intrinsic to films grown on sapphire. From the results of Hall measurements, the unintentional donor in high quality GaN films cannot be Si since the donor ionization energy is much larger than that of films intentionally doped with Si (36 vs 26 meV). Electrical properties of a doped channel layer are shown not to be significantly different from those of thick films which implies a viable technology for conducting channel devices. It is argued that 77K Hall measurements are a useful indicator of GaN film quality and a compilation of unintentionally and Si doped data is presented. The 77K data imply that, at least over a limited range, Si-doping does not appreciably change the compensation of the GaN. The 77K data indicate that the low mobilities of films grown at low temperatures are probably not related to dopant impurities.  相似文献   
3.
The results from an in-depth characterization of as-grown and annealed low-temperature GaAs layers deposited at less than 260°C are presented. The layers, amorphous as grown, became crystalline after annealing. The crystallization was documented by several characterization techniques including photoreflectance, Raman spectroscopy, photoluminescence, transmission electron microscopy, and double-crystal x-ray diffraction. The n-type conductivity of the annealed films was exploited for the construction of a diode structure.  相似文献   
4.
In the absence of minerals as stiffening agents, insects and spiders often use metal‐ion cross‐linking of protein matrices in their fully organic load‐bearing “tools.” In this comparative study, the hierarchical fiber architecture, elemental distribution, and the micromechanical properties of the manganese‐ and calcium‐rich cuticle of the claws of the spider Cupiennius salei, and the Zn‐rich cuticle of the cheliceral fangs of the same animal are analyzed. By correlating experimental results to finite element analysis, functional microstructural and compositional adaptations are inferred leading to remarkable damage resilience and abrasion tolerance, respectively. The results further reveal that the incorporation of both zinc and manganese/calcium correlates well with increased biomaterial's stiffness and hardness. However, the abrasion‐resistance of the claw material cross‐linked by incorporation of Mn/Ca‐ions surpasses that of many other non‐mineralized biological counterparts and is comparable to that of the fang with more than triple Zn content. These biomaterial‐adaptation paradigms for enhanced wear‐resistance may serve as novel design principles for advanced, high‐performance, functional surfaces, and graded materials.  相似文献   
5.
Stomatopods are aggressive crustacean predators that use a pair of ultrafast raptorial appendages to strike on prey. This swift movement is driven by a power amplification system comprising components that must be able to repetitively store and release a high amount of elastic energy. An essential component of this system is the saddle structure, in which the elastic energy is stored by bending prior to striking. Here, a comprehensive study that sheds light on the microstructural and chemical designs of the stomatopod's saddle is conducted. MicroCT scans combined with electron microscopy imaging, elemental mapping, high‐resolution confocal Raman microscopy, and nanomechanical mapping show that the saddle is a bilayer structure with sharp changes in chemical composition and mechanical properties between the layers. The outer layer is heavily mineralized whereas the inner layer contains a high content of chitin and proteins, leading to a spatial organization of phases which is optimized for load distribution during saddle bending. The mineralized outer layer sustains compressive stresses, whereas the inner biopolymeric layer provides tensile resistance. These findings reveal that the saddle chemical composition and microstructure have been spatially tuned to generate a stiff, yet flexible structure that is optimized for storage of elastic energy.  相似文献   
6.
Construction of q-ary quasi-cyclic low-density parity-check (QC-LDPC) codes based on two-dimensional multiplicative arrays over Zq−1, q = 2m, is studied. In particular, two-dimensional arrays formed by the set of quadratic-residue numbers modulo prime numbers less than q are considered.  相似文献   
7.
Structural Chemistry - In this study, a quantitative structure–property relationship (QSPR) was proposed using the random forests (RF) and artificial neural network (ANN) for determining the...  相似文献   
8.
We present the results of a study of GaAs material grown at substrate temperatures below 250°C (low range GaAs) by molecular beam epitaxy. This material is amorphous and highly resistive and can be converted to single crystal through annealing process. The crystallization process is investigated by transmission electron microscopy, reflection high-energy electron diffraction, and double-crystal x-ray diffraction techniques.  相似文献   
9.
A new potentiometric sensor for the rapid determination of Hg2+ based on modified carbon paste electrode consisting of room temperature ionic liquid, 1-Butyl-3-methylimidazolium hexafluorophosphate (BMIM-PF6), multi-walled carbon nanotubes (MWCNTs), alumina nanoparticles and a synthetic macrocyclic diamide ‘7,10,13-triaza-1-thia-4,16-dioxa-6,14-dioxo-2,3;17,18-dinaphtho-cyclooctadecane’ as an efficient ionophore was constructed. Prepared composite is an ideal paste because it has low drift of potential, high selectivity and fast response time (10 s), which leads to a more stable potential signal. The morphology and properties of electrodes surface were characterised by scanning electron microscopy (SEM) and electrochemical impedance spectroscopy. A linear dynamic range of 2.01–2.01 × 107 µg L?1 with detection limit of 1.40 µg L?1 Hg2+ was obtained at pH range of 2.5 to 4.5. The prepared modified electrode shows several advantages such as simple preparation method, high stability of the composite paste, high sensitivity, long-term life time (at least 13 weeks) and remarkable potentiometric reproducibility. The modified electrode was successfully applied for the accurate determination of trace amounts of Hg 2+ in environmental samples.  相似文献   
10.
Structural Chemistry - In this study, a series of NSAID 1-acyl-4-cycloalkyl/arylsemicarbazides and 1-acyl-5-benzyloxy/hydroxy carbamoylcarbazides possess anti-cancer activity against three human...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号