首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   1篇
物理学   4篇
无线电   9篇
  2021年   1篇
  2019年   1篇
  2014年   2篇
  2007年   1篇
  2002年   2篇
  2001年   6篇
  2000年   1篇
排序方式: 共有14条查询结果,搜索用时 15 毫秒
1.
The high frequency properties of InAs/GaInAs quantum dot distributed feedback (DFB) lasers emitting at 1.3 μm have been examined. The lasers display a small static linewidth of 1.3 MHz and a chirp as low as 83 MHz/mA. More than 5 GHz small-signal modulation bandwidth was observed in the first devices indicating the potential for high-speed operation of quantum dot lasers  相似文献   
2.
The monolithic combination of active light sources with photonic crystal (PC) waveguide components is a key building block for future highly integrated photonic circuits. We demonstrate the coupling of light from an InGaAs/AlGaAs ridge waveguide laser to a monolithically integrated 2D PC waveguide. The PC guide is formed by removing three or five rows in a triangular lattice of air rods etched into the semiconductor. A tapered ridge waveguide geometry is demonstrated to improve coupling efficiency, so that maximum output powers of up to 10 mW from the PC waveguide are achieved. The resulting coupled cavity laser shows single mode emission with side mode suppression ratios > 35 dB over a broad range of injection currents.  相似文献   
3.
Semiconductors - The results of experiments aimed at the observation of split 1s states in Mg-doped Si are reported. From the results, it is possible to determine the chemical shift and exchange...  相似文献   
4.
Singlemode operation of 1.3 μm InAs/GaInAs quantum dot lasers has been achieved using the concept of complex coupled distributed feedback. Mode selection was realised by laterally patterned metal gratings. At room temperature the lasers show stable singlemode emission with sidemode suppression ratios of up to 55 dB, threshold currents as low as 17 mA and output powers of up to 8 mW under continuous wave operation  相似文献   
5.
Design of polymer anti-reflective (AR) optical coatings for plastic substrates is challenging because polymers exhibit a relatively narrow range of refractive indices. Here, we report synthesis of a four-layer AR stack using hybrid polymer:nanoparticle materials deposited by resonant infrared matrix-assisted pulsed laser evaporation. An Er:YAG laser ablated frozen solutions of a high-index composite containing TiO2 nanoparticles and poly(methyl-methacrylate) (PMMA), alternating with a layer of PMMA. The optimized AR coatings, with thicknesses calculated using commercial software, yielded a coating for polycarbonate with transmission over 97 %, scattering <3 %, and a reflection coefficient below 0.5 % across the visible range, with a much smaller number of layers than would be predicted by a standard thin film calculation. The TiO2 nanoparticles contribute more to the enhanced refractive index of the high-index layers than can be accounted for by an effective medium model of the nanocomposite.  相似文献   
6.
Invited for the cover of this issue is Bernd Engels, Holger Braunschweig, Volker Engel and their coworkers at University of Würzburg. The image depicts bridged boron compounds which possess fascinating relationships between their composition and their geometrical and electronic structures, the latter ranging from closed-shell to biradical triplet or singlet ground state. Read the full text of the article at 10.1002/chem.202004619 .  相似文献   
7.
Highly reflecting Bragg mirrors in combination with GaInAs/AlGaAs laser structures with two layers of self-organised GaInAs quantum-dots are used to realise CW-operating edge-emitting microlasers with cavity lengths down to 12 μm. Owing to the large spacing of the longitudinal modes of 8.2 nm for 12 μm long lasers, quasi-singlemode operation is obtained  相似文献   
8.
Barrier materials on thin-film organic optoelectronic devices inhibit the uptake of water, oxygen, or environmental contaminants, and fabricating them is a major challenge. By definition, these barrier layers must be insoluble, so the usual routes to polymer- or organic-film deposition by spin coating are not problematic. In this paper, we report comparative studies of pulsed laser deposition of cyclic olefin copolymer (COC), an excellent moisture barrier and a model system for a larger class of protective materials that are potentially useful in organic electronic devices, such as organic light-emitting diodes (OLEDs). Thin films of COC were deposited by resonant and nonresonant infrared pulsed laser ablation of solid COC targets, using a free-electron laser tuned to the 3.43 μm C–H stretch of the COC, and a high-intensity nanosecond Q-switched laser operated at 1064 nm. The ablation craters and deposited films were characterized by scanning-electron microscopy, Fourier-transform infrared spectrometry, atomic-force microscopy, high-resolution optical microscopy, and surface profilometry. Thermal-diffusion calculations were performed to determine the temperature rise induced in the film at the C–H resonant wavelength. The results show that resonant infrared pulsed laser deposition (RIR-PLD) is an effective, low-temperature thin-film deposition technique that leads to evaporation and deposition of intact molecules in homogeneous, smooth films. Nonresonant PLD, on the other hand, leads to photothermal damage, degradation of the COC polymers, and to the deposition only of particulates.  相似文献   
9.
High-performance 1.3-μm-emitting quantum-dot lasers were fabricated by self-organized growth of InAs dots embedded in GaInAs quantum wells. The influence of the number of quantum-dot layers on the device performance was investigated. Best device results were achieved with six-dot layers. From the length dependence; a maximum ground state gain of 17 cm-1 for six dot layers could be determined. Ridge waveguide lasers with a cavity length of 400 μm and high-reflection coatings show threshold currents of 6 mA and output powers of more than 5 mV. Unmounted devices can be operated in continuous wave mode up to 85°C. A maximum operating temperature of 160°C was achieved in pulsed operation for an uncoated 2.5-mm-long ridge waveguide laser  相似文献   
10.
The authors have investigated tunable distributed feedback (DFB) lasers based on InGaAs quantum dots grown by molecular beam epitaxy. Two-section tunable DFB lasers were fabricated by patterning laterally gain coupling binary superimposed gratings perpendicular to the ridge waveguide. Side-mode suppression ratios of up to 40 dB have been achieved. The tuning range covers 30 nm.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号