首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10998篇
  免费   721篇
  国内免费   41篇
化学   6334篇
晶体学   101篇
力学   215篇
数学   740篇
物理学   1674篇
无线电   2696篇
  2023年   132篇
  2022年   155篇
  2021年   261篇
  2020年   238篇
  2019年   241篇
  2018年   212篇
  2017年   211篇
  2016年   410篇
  2015年   338篇
  2014年   424篇
  2013年   683篇
  2012年   777篇
  2011年   872篇
  2010年   551篇
  2009年   571篇
  2008年   760篇
  2007年   647篇
  2006年   587篇
  2005年   497篇
  2004年   467篇
  2003年   385篇
  2002年   421篇
  2001年   242篇
  2000年   231篇
  1999年   154篇
  1998年   115篇
  1997年   115篇
  1996年   91篇
  1995年   76篇
  1994年   59篇
  1993年   63篇
  1992年   67篇
  1991年   48篇
  1990年   59篇
  1989年   54篇
  1988年   31篇
  1987年   35篇
  1986年   26篇
  1985年   35篇
  1984年   35篇
  1983年   27篇
  1982年   27篇
  1981年   19篇
  1980年   33篇
  1979年   26篇
  1978年   32篇
  1977年   30篇
  1976年   21篇
  1975年   17篇
  1970年   19篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Antimony triselenide (Sb2Se3) nanoflake-based nitrogen dioxide (NO2) sensors exhibit a progressive bifunctional gas-sensing performance, with a rapid alarm for hazardous highly concentrated gases, and an advanced memory-type function for low-concentration (<1 ppm) monitoring repeated under potentially fatal exposure. Rectangular and cuboid shaped Sb2Se3 nanoflakes, comprising van der Waals planes with large surface areas and covalent bond planes with small areas, can rapidly detect a wide range of NO2 gas concentrations from 0.1 to 100 ppm. These Sb2Se3 nanoflakes are found to be suitable for physisorption-based gas sensing owing to their anisotropic quasi-2D crystal structure with extremely enlarged van der Waals planes, where they are humidity-insensitive and consequently exhibit an extremely stable baseline current. The Sb2Se3 nanoflake sensor exhibits a room-temperature/low-voltage operation, which is noticeable owing to its low energy consumption and rapid response even under a NO2 gas flow of only 1 ppm. As a result, the Sb2Se3 nanoflake sensor is suitable for the development of a rapid alarm system. Furthermore, the persistent gas-sensing conductivity of the sensor with a slow decaying current can enable the development of a progressive memory-type sensor that retains the previous signal under irregular gas injection at low concentrations.  相似文献   
2.
3.
Human skin is exposed to visible light (VL; 400–700 nm) and long-wavelength ultraviolet A1 (UVA1) radiation (370–400 nm) after the application of organic broad-spectrum sunscreens. The biologic effects of these wavelengths have been demonstrated; however, a dose–response has not been investigated. Ten subjects with Fitzpatrick skin phototype IV-VI were enrolled. Subjects were irradiated with 2 light sources (80–480 J cm−2): one comprising VL with less than 0.5% UVA1 (VL+UVA1) and the other pure VL. Skin responses were evaluated for 2 weeks using clinical and spectroscopic assessments. 4-mm punch biopsies were obtained from nonirradiated skin and sites irradiated with 480 J cm−2 of VL+UVA1 and pure VL 24 h after irradiation. Clinical and spectroscopic assessments demonstrated a robust response at VL+UVA1 sites compared with pure VL. Histology findings demonstrated a statistically significant increase in the marker of inflammation (P < 0.05) and proliferation (P < 0.05) at the irradiated sites compared with nonirradiated control. Threshold doses of VL+UVA1 resulting in biologic responses were calculated. Results indicate that approximately 2 h of sun exposure, which equates to VL+UVA1 dose (~400 J cm−2), is capable of inducing inflammation, immediate erythema and delayed tanning. These findings reinforce the need of photoprotection beyond the UV range.  相似文献   
4.
A device able to electrokinetically concentrate cationic samples has many potential medical and industrial applications, but until now has remained undeveloped due to the lack of a commercial anion-permselective material leading to a prohibitively complex fabrication procedure. Herein, a novel multiscale-porous anion exchange membrane (MP-AEM) that enables the convenient and scalable electrokinetic concentration of cationic species is proposed. A mechanically enhanced multiscale-porous structure with a solid framework is realized by adopting polyester resin as an additive to overcome the intrinsic limitations of the AEM material. The scalable MP-AEM-embedded electrokinetic concentrator is devised based on the peculiar properties of the MP-AEM that for allow both ion and fluid transport. With the MP-AEM, the concentrator is fabricated in a highly streamlined manner consisting only of a simple insertion and assembly. The concentration performance of the MP-AEM-embedded electrokinetic concentrator is demonstrated with a positively charged fluorescent dye and a fluorescein-labeled protein, and the results show enrichment factors of 250 and 500, respectively. The MP-AEM makes cationic electrokinetic concentration more accessible and scalable, thereby enabling further progress in a wide range of fields.  相似文献   
5.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
6.
Poor strength, infection, leakage, long procedure times, and inflammation limit the efficacy of common tissue sealing devices in surgeries and trauma. Light-activated sealing is attractive for tissue sealing and repair, and can be facilitated by the generation of local heat following absorption of nonionizing laser energy by chromophores. Here, the inherent ability of biomaterials is exploited to absorb nonionizing, mid-infrared (midIR) light in order to engender rapid photothermal sealing and repair of soft tissue wounds. In this approach, the biomaterial simultaneously acts as a photothermal convertor as well as a biosealant, which dispenses the need for exogeneous light-absorbing nanoparticles or dyes. Biomechanical recovery, mathematical modeling, histopathology analyses, tissue strain mapping using digital imaging correlation, and visualization of the biosealant-tissue interface using hyperspectral imaging indicate superior performance of midIR sealing in live mice compared to conventional sutures and glue. The midIR-biosealant approach demonstrates rapid sealing of soft tissues, improves cosmesis, lowers potential for scarring, obviates safety concerns because of the nonionizing light used, and allows adoption of a wide diversity of biomaterials. Taken together, the studies demonstrate a novel advance both in biomaterials for surgical sealing along with the use of nonionizing midIR light, with high potential for clinical translation.  相似文献   
7.
This letter presents a small‐sized, high‐power single‐pole double‐throw (SPDT) switch with defected ground structure (DGS) for wireless broadband Internet application. To reduce the circuit size by using a slow‐wave characteristic, the DGS is used for the quarter‐wave (°/4) transmission line of the switch. To secure a high degree of isolation, the switch with DGS is composed of shunt‐connected PIN diodes. It shows an insertion loss of 0.8 dB, an isolation of 50 dB or more, and power capability of at least 50 W at 2.3 GHz. The switch shows very similar performance to the conventional shunt‐type switch, but the circuit size is reduced by about 50% simply with the use of DGS patterns.  相似文献   
8.
9.
The recent advancement in high- performance semiconductor packages has been driven by the need for higher pin count and superior heat dissipation. A one-piece cavity lid flip chip ball grid array (BGA) package with high pin count and targeted reliability has emerged as a popular choice. The flip chip technology can accommodate an I/O count of more than five hundreds500, and the die junction temperature can be reduced to a minimum level by a metal heat spreader attachment. None the less, greater expectations on these high-performance packages arose such as better substrate real estate utilization for multiple chips, ease in handling for thinner core substrates, and improved board- level solder joint reliability. A new design of the flip chip BGA package has been looked into for meeting such requirements. By encapsulating the flip chip with molding compound leaving the die top exposed, a planar top surface can be formed. A, and a flat lid can then be mounted on the planar mold/die top surface. In this manner the direct interaction of the metal lid with the substrate can be removed. The new package is thus less rigid under thermal loading and solder joint reliability enhancement is expected. This paper discusses the process development of the new package and its advantages for improved solder joint fatigue life, and being a multichip package and thin core substrate options. Finite-element simulations have been employed for the study of its structural integrity, thermal, and electrical performances. Detailed package and board-level reliability test results will also be reported  相似文献   
10.
Many organisations use decision models in their processes such as tables or trees to provide decision support to their operational divisions. For example, in fault management, customer contact centre operators usually use a decision model in the form of prescribed interviews. Based on the answers given by customers, the operator navigates through the decision model to reach an assessment of the problem. In order to achieve customer satisfaction and operational excellence, it is very important to constantly monitor the performance of a decision model not only on an overall level, but also on the level of individual decisions. In this paper we present a configurable business process analytics tool, known as the intelligent Universal Service Management System, that constantly monitors decision data and is capable of optimising the decisions based on high-level business objectives. We explain the various features of the software and show how it can be used to optimise decision processes. We also show how we can easily provide a customised version to monitor the performance of provision processes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号