首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51964篇
  免费   4703篇
  国内免费   2812篇
化学   27384篇
晶体学   500篇
力学   1602篇
综合类   187篇
数学   3863篇
物理学   11187篇
无线电   14756篇
  2024年   56篇
  2023年   717篇
  2022年   859篇
  2021年   1482篇
  2020年   1337篇
  2019年   1376篇
  2018年   1134篇
  2017年   1140篇
  2016年   1855篇
  2015年   1694篇
  2014年   2246篇
  2013年   3253篇
  2012年   3718篇
  2011年   4016篇
  2010年   2866篇
  2009年   2742篇
  2008年   3491篇
  2007年   3054篇
  2006年   3016篇
  2005年   2751篇
  2004年   2284篇
  2003年   2054篇
  2002年   2035篇
  2001年   1435篇
  2000年   1293篇
  1999年   1037篇
  1998年   803篇
  1997年   704篇
  1996年   728篇
  1995年   576篇
  1994年   502篇
  1993年   472篇
  1992年   409篇
  1991年   348篇
  1990年   311篇
  1989年   244篇
  1988年   200篇
  1987年   147篇
  1986年   119篇
  1985年   153篇
  1984年   100篇
  1983年   87篇
  1982年   94篇
  1981年   94篇
  1980年   49篇
  1979年   59篇
  1978年   50篇
  1976年   43篇
  1975年   38篇
  1974年   39篇
排序方式: 共有10000条查询结果,搜索用时 421 毫秒
1.
4D printing is an exciting branch of additive manufacturing. It relies on established 3D printing techniques to fabricate objects in much the same way. However, structures which fall into the 4D printed category have the ability to change with time, hence the “extra dimension.” The common perception of 4D printed objects is that of macroscopic single-material structures limited to point-to-point shape change only, in response to either heat or water. However, in the area of polymer 4D printing, recent advancements challenge this understanding. A host of new polymeric materials have been designed which display a variety of wonderful effects brought about by unconventional stimuli, and advanced additive manufacturing techniques have been developed to accommodate them. As a result, the horizons of polymer 4D printing have been broadened beyond what was initially thought possible. In this review, we showcase the many studies which evolve the very definition of polymer 4D printing, and reveal emerging areas of research integral to its advancement.  相似文献   
2.
The designs of efficient and inexpensive Pt-based catalysts for methanol oxidation reaction (MOR) are essential to boost the commercialization of direct methanol fuel cells. Here, the highly catalytic performance PtFe alloys supported on multiwalled carbon nanotubes (MWCNTs) decorating nitrogen-doped carbon (NC) have been successfully prepared via co-engineering of the surface composition and electronic structure. The Pt1Fe3@NC/MWCNTs catalyst with moderate Fe3+ feeding content (0.86 mA/mgPt) exhibits 2.26-fold enhancement in MOR mass activity compared to pristine Pt/C catalyst (0.38 mA/mgPt). Furthermore, the CO oxidation initial potential of Pt1Fe3@NC/MWCNTs catalyst is lower relative to Pt/C catalyst (0.71 V and 0.80 V). Benefited from the optimal surface compositions, the anti-corrosion ability of MWCNT, strong electron interaction between PtFe alloys and MWCNTs and the N-doped carbon (NC) layer, the Pt1Fe3@NC/MWCNTs catalyst presents an improved MOR performance and anti-CO poisoning ability. This study would open up new perspective for designing efficient electrocatalysts for the DMFCs field.  相似文献   
3.
Let p ∈ [1, ∞), q ∈ [1, ∞), α∈ R, and s be a non-negative integer. Inspired by the space JNp introduced by John and Nirenberg(1961) and the space B introduced by Bourgain et al.(2015), we introduce a special John-Nirenberg-Campanato space JNcon(p,q,s) over Rn or a given cube of R;with finite side length via congruent subcubes, which are of some amalgam features. The limit space of such spaces as p →∞ is just the Campanato space which coincides with the space BMO(the space of functions with bounded mean oscillations)when α = 0. Moreover, a vanishing subspace of this new space is introduced, and its equivalent characterization is established as well, which is a counterpart of the known characterization for the classical space VMO(the space of functions with vanishing mean oscillations) over Rn or a given cube of Rn with finite side length.Furthermore, some VMO-H1-BMO-type results for this new space are also obtained, which are based on the aforementioned vanishing subspaces and the Hardy-type space defined via congruent cubes in this article. The geometrical properties of both the Euclidean space via its dyadic system and congruent cubes play a key role in the proofs of all these results.  相似文献   
4.
The requirement of green and sustainable materials to prepare heterogeneous catalysts has intensified for practical reasons over the past few decades. Carbohydrates are possibly the most plentiful and renewable organic materials in nature with inimitable physiochemical properties, plausible low-cost and large-scale production, and sustainability features could be exploited in the generation of nanostructured heterogeneous catalysts. This review article outlines the organic transformations catalyzed by diverse carbohydrate-based nanostructured catalysts in greener and environmentally friendly processes. Selected examples are highlighted for a variety of organic reactions exploiting the proposed catalysts’ reactivity and reusability, and interactions with the intrinsic nature of the applied carbohydrate supports; advantages and speculated challenges of the introduced catalysts are deliberated as well.  相似文献   
5.
Surface passivation treatment is a widely used strategy to resolve trap-mediated nonradiative recombination toward high-efficiency metal-halide perovskite photovoltaics. However, a lack of passivation with mixture treatment has been investigated, as well as an in-depth understanding of its passivation mechanism. Here, a systematic study on a mixed-salt passivation strategy of formamidinium bromide (FABr) coupled with different F-substituted alkyl lengths of ammonium iodide is demonstrated. It is obtained better device performance with decreasing chain length of the F-substituted alkyl ammonium iodide in the presence of FABr. Moreover, they unraveled a synergistic passivation mechanism of the mixed-salt treatment through surface reconstruction engineering, where FABr dominates the reformation of the perovskite surface via reacting with the excess PbI2. Meanwhile, ammonium iodide passivates the perovskite grain boundaries both on the surface and top perovskite bulk through penetration. This synergistic passivation engineer results in a high-quality perovskite surface with fewer defects and suppressed ion migration, leading to a champion efficiency of 23.5% with mixed-salt treatment. In addition, the introduction of the moisture resisted F-substituted groups presents a more hydrophobic perovskite surface, thus enabling the decorated devices with excellent long-term stability under a high humid atmosphere as well as operational conditions.  相似文献   
6.
Mobile Networks and Applications - Aiming at the problems of large data volume, long calculation time, and information feedback speed in traditional virtual augmented reality-based scenes, this...  相似文献   
7.
Hydrogel shells that compartmentalize the water core from the aqueous surrounding provide molecular selectivity on size and charge in transmembrane transport. It is highly demanding to produce thin hydrogel shells to minimize diffusion length and maximize core volume. Here, internal osmosis in water-in-oil-in-water-in-oil (W/O/W/O) triple-emulsion droplets is used to produce thin hydrogel shells enclosing a large water core. The triple-emulsion droplets are prepared to have an ultrathin middle oil layer using a capillary microfluidic device. The innermost water droplet has a higher osmolarity than the outer water layer containing photopolymerizable hydrogel precursors, which pumps water from the outer layer to the core through the ultrathin oil layer by the osmosis. Therefore, the outer layer gets thinner and hydrogel precursors are enriched while the size of the triple-emulsion droplets remains unchanged. Through photopolymerization of precursors and phase transfer from oil to water, hydrogel shells enclosing water core are produced in the water environment; the oil layer is ruptured for molecular exchange through the shells. The thickness and composition of the hydrogel shells are precisely controllable by the osmotic conditions. The shells show a high permeation rate due to the thinness as well as controlled cut-off threshold of permeation for neutral and charged molecules.  相似文献   
8.
Solar-driven interfacial vaporization by localizing solar-thermal energy conversion to the air−water interface has attracted tremendous attention. In the process of converting solar energy into heat energy, photothermal materials play an essential role. Herein, a flexible solar-thermal material di-cyan substituted 5,12-dibutylquinacridone (DCN−4CQA)@Paper was developed by coating photothermal quinacridone derivatives on the cellulose paper. The DCN−4CQA@Paper combines desired chemical and physical properties, broadband light-absorbing, and shape-conforming abilities that render efficient photothermic vaporization. Notably, synergetic coupling of solar-steam and solar-electricity technologies by integrating DCN−4CQA@Paper and the thermoelectric devices is realized without trade-offs, highlighting the practical consideration toward more impactful solar heat exploitation. Such solar distillation and low-grade heat-to-electricity generation functions can provide potential opportunities for fresh water and electricity supply in off-grid or remote areas.  相似文献   
9.
Jin  Zhuochen  Cao  Nan  Shi  Yang  Wu  Wenchao  Wu  Yingcai 《显形杂志》2021,24(2):349-364
Journal of Visualization - The increasing availability of spatiotemporal data provides unprecedented opportunities for understanding the structure of an urban area in terms of people’s...  相似文献   
10.
Zhao  Kui  He  Fangmin  Meng  Jin  Wu  Hao  Zhang  Lei 《Wireless Networks》2021,27(3):1671-1681
Wireless Networks - In such mobile platforms as ships and aircraft, the detection and reconnaissance devices are near to the communication facilities. When working at the same time, they will...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号