首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   100篇
  免费   3篇
化学   66篇
晶体学   1篇
力学   1篇
数学   7篇
物理学   12篇
无线电   16篇
  2023年   2篇
  2022年   4篇
  2021年   5篇
  2020年   1篇
  2019年   5篇
  2018年   3篇
  2017年   4篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   8篇
  2011年   3篇
  2010年   2篇
  2009年   2篇
  2008年   9篇
  2007年   12篇
  2006年   7篇
  2005年   11篇
  2004年   1篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   1篇
  1994年   2篇
  1984年   2篇
排序方式: 共有103条查询结果,搜索用时 16 毫秒
1.
During the course of our investigation of the electron transfer properties of some redox species through highly hydrophobic long chain alkanethiol molecules on gold in aqueous and non-aqueous solvents, we obtained some intriguing results such as unusually low interfacial capacitance, very high values of impedance and film resistance, all of which pointed to the possible existence of a nanometer size interfacial gap between the hydrophobic monolayer and aqueous electrolyte. We explain this phenomenon by a model for the alkanethiol monolayer—aqueous electrolyte interface, in which the extremely hydrophobic alkanethiol film repels water molecules adjacent to it and in the process creates a shield between the monolayer film and water. This effectively increases the overall thickness of the dielectric layer that is manifested as an abnormally low value of interfacial capacitance. This behaviour is very much akin to the ‘drying transition’ proposed by Lum, Chandler and Weeks in their theory of length scale dependent hydrophobicity. For small hydrophobic units consisting of apolar solutes, the water molecules can reorganize around them without sacrificing their hydrogen bonds. Since for an extended hydrophobic unit, the existence of hydrogen bonded water structure close to it is geometrically unfavourable, there is a net depletion of water molecules in the vicinity leading to the possible creation of a hydrophobic interfacial gap.  相似文献   
2.
Bacterial trapping using nanonets is a ubiquitous immune defense mechanism against infectious microbes. These nanonets can entrap microbial cells, effectively arresting their dissemination and rendering them more vulnerable to locally secreted microbicides. Inspired by this evolutionarily conserved anti-infective strategy, a series of 15 to 16 residue-long synthetic β-hairpin peptides is herein constructed with the ability to self-assemble into nanonets in response to the presence of bacteria, enabling spatiotemporal control over microbial killing. Using amyloid-specific K114 assay and confocal microscopy, the membrane components lipoteichoic acid and lipopolysaccharide are shown to play a major role in determining the amyloid-nucleating capacity as triggered by Gram-positive and Gram-negative bacteria respectively. These nanonets displayed both trapping and killing functionalities, hence offering a direct improvement from the trap-only biomimetics in literature. By substituting a single turn residue of the non-amyloidogenic BTT1 peptide, the nanonet-forming BTT1-3A analog is produced with comparable antimicrobial potency. With the same sequence manipulation approach, BTT2-4A analog modified from BTT2 peptide showed improved antimicrobial potency against colistin-resistant clinical isolates. The peptide nanonets also demonstrated robust stability against proteolytic degradation, and promising in vivo efficacy and biosafety profile. Overall, these bacteria-responsive peptide nanonets are promising clinical anti-infective alternatives for circumventing antibiotic resistance.  相似文献   
3.
Wireless Personal Communications - In this paper, the effect of perfect electric conductor (PEC) as a ground plane on antenna array is investigated. Vertical electric dipole which is of...  相似文献   
4.
The thermal stability of short alkanethiol CH(3)(CH(2))(7)SH (C(8)) and long C(18) self-assembled monolayers (SAMs) is investigated using grazing angle reflection-absorption infrared spectroscopy, cyclic voltammetry, and molecular dynamics simulation. We track the disordering of SAM by untilting and gauche defect accumulation with increasing temperature in the 300-440 K range, a range of interest to tribology. Molecular dynamics simulation with both fully covered and partially covered C(6), C(8), and C(18) monolayers brings out the morphological changes in the SAM, which may be associated with the observed thermal stability characteristics. The molecular dynamics simulations reveal that short-chain C(6) and C(8) alkanethiols are more defective at lower temperature than the long-chain C(18) alkanethiol. With increasing temperature disorder in the SAM, as reflected in both untilting and gauche defect accumulation, tends to saturate at temperatures below 360 K for short-chain SAMs such that any further increase in temperature, until desorption, does not lead to any significant change in conformational order. In contrast the disorder in the long-chain C(18) SAM increases monotonically with temperature beyond 360 K. Thus, in a practical range of temperature, the ability of a SAM to retain order with increasing thermal perturbations is governed by the state of disorder prior to heat treatment. This deduction derived from molecular dynamics simulation helps to rationalize the significant difference we have observed experimentally between the thermal response of short- and long-chain thiol molecules.  相似文献   
5.
The highly hydrophobic neat alkanethiol-coated SAM on evaporated gold shows an unusually low interfacial capacitance in aqueous media. This result cannot be explained by a simple parallel plate model of the double layer with the alkanethiol monolayer as a sole dielectric separator. Interestingly, a hydrophilic SAM prepared from a neat hydroxy thiol does not show any such capacitance lowering in aqueous media. Our results suggest the existence of a "hydrophobic gap" between the alkanethiol SAM-water interface. Such a model is also very much consistent with the predictions of Lum, Chandler, and Weeks theory of length scale dependent hydrophobicity.  相似文献   
6.
7.

A pyrene based probe associated with π···hole – hydrazone as one of the recognizing elements is synthesized and its turn in to a selective colorimetric and turn-on fluorescent sensor, (L3) for cyanide anion. This chemo sensor show high selectivity towards cyanide anion through photo electron transfer (PET) mechanism. The binding strength and sensitivity of the chemo sensor L3 towards cyanide are found to be 2.0 X 104, and 4.44 x 10-4 respectively. We have compared this high selectivity of the receptor towards cyanide, with our previously reported receptors L1 and L2. The detailed UV-Vis, Emission, 1H-NMR, IR spectroscopic and Molecular Electrostatic Potential (MEP) studies reveals that the homogeneous π···hole dispersion in the aromatic ring governing the selectivity of the receptor towards cyanide anion. Such a positive π···hole homogeneous dispersion is missing in the case of sensor L2, instead we have polarized π···hole dispersion towards 2nd and 4th position of di-nitrophenyl chromophoric unit in L2.

Graphical Abstract
  相似文献   
8.
4-Hydroxy isoleucine is one of the potent hypoglycemic active constituents of fenugreek seeds. A method capable of reducing biological interferences is required for bioavailability studies. An isocratic separation of 4-hydroxy isoleucine from endogenous interferences was achieved in ZIC-cHILIC column using 0.1% formic acid in water and acetonitrile (20:80, % v/v) pumped at 0.5 ml/min. Quantification was performed in multiple reaction monitoring mode using the transitions of m/z 148.1→102.1 and m/z 276.1→142.2 for 4-hydroxy isoleucine and homatropine (as internal standard), respectively. After full method validation, 4-hydroxy isoleucine levels in human plasma and commercial fenugreek formulations were determined. This method showed good linearity in the range of 50–2000 ng/mL. Intra- and interday accuracies were in the range of 90.64–109.0% and precision was <4.82% CV. The mean (SD) plasma concentration of 4-hydroxy isoleucine in healthy individuals at 2 h after oral administration of fenugreek tablet was found to be 1590 (260) ng/mL. Half of marketed formulations were found to contain <0.05% of 4-hydroxy isoleucine content. We developed a rapid hydrophilic interaction liquid chromatography–tandem mass spectrometry method for analysis of 4-hydroxy isoleucine in human plasma. This method can be applied directly to conduct the clinical pharmacokinetics studies of 4-hydroxy isoleucine in human population.  相似文献   
9.
Properties such as shear modulus, gelation time, structure of supramolecular hydrogels are strongly dependent on self-assembly, gelation triggering mechanism and processes used to form the gel. In our work we extend reported rheology analysis methodologies to pH-triggered supramolecular gels to understand structural insight using a model system based on N−N’ Dibenzoyl-L-Cystine pH-triggered hydrogelator and Glucono-δ-Lactone as the trigger. We observed that Avrami growth model when applied to time-sweep rheological data of gels formed at lower trigger concentrations provide estimates of fractal dimension which agree well compared with visualization of the microstructure as seen via Confocal Laser Scanning Microscopy, for a range of gelator concentrations.  相似文献   
10.
A low‐cost and easy‐to‐fabricate microchip remains a key challenge for the development of true point‐of‐care (POC) diagnostics. Cellulose paper and plastic are thin, light, flexible, and abundant raw materials, which make them excellent substrates for mass production of POC devices. Herein, a hybrid paper–plastic microchip (PPMC) is developed, which can be used for both single and multiplexed detection of different targets, providing flexibility in the design and fabrication of the microchip. The developed PPMC with printed electronics is evaluated for sensitive and reliable detection of a broad range of targets, such as liver and colon cancer protein biomarkers, intact Zika virus, and human papillomavirus nucleic acid amplicons. The presented approach allows a highly specific detection of the tested targets with detection limits as low as 102 ng mL?1 for protein biomarkers, 103 particle per milliliter for virus particles, and 102 copies per microliter for a target nucleic acid. This approach can potentially be considered for the development of inexpensive and stable POC microchip diagnostics and is suitable for the detection of a wide range of microbial infections and cancer biomarkers.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号