首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   0篇
化学   8篇
无线电   4篇
  2022年   4篇
  2021年   2篇
  2020年   1篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
  2000年   1篇
排序方式: 共有12条查询结果,搜索用时 281 毫秒
1.
In this work, magnesium ferrites nanoparticles (MgFe2O4 NPs) were successfully fabricated by sol-gel auto-combustion (SGAC) method and were used in heterogeneous Fenton-like degradation of tartrazine. The obtained products were characterized using XRD, FTIR, SEM and EDX. XRD studies confirmed that the synthesized MgFe2O4 NPs had a cubic spinel structure. The average crystallite size was evaluated using the Debyee Scherrer formula and found to be in the range 16.18–28.55 nm. In FTIR spectra, two primary absorption bands at 571 cm?1 and 415 cm?1 were observed. The spinel ferrites are characterized by these bands and the EDX confirms the presence of the desired elements Mg, Fe, and O. The influences of operating parameters were examined using the Box Behnken statistical design (BD), including magnesium ferrite dosage (0.04–0.12 g/L), tartrazine concentration (30–50 mg/L) and H2O2 concentration (3.53–7.06 mM). Using analysis of variance, a significant quadratic model was created. Optimum conditions were magnesium ferrite dosage of 0.092 g/L, tartrazine concentration of 30.21 mg/L and H2O2 concentration of 6.66 mM, respectively. The predicted degradation efficiency within the optimum conditions as established by the suggested model was 98.4%. Confirmatory tests were carried out and the degradation efficiency of 98.9% was observed, which was in good agreement with the model's prediction. After five recuperation and reapplications, the catalyst's degradation efficiency remains stable. These findings indicate that a heterogeneous Fenton-like process utilizing MgFe2O4 is effective in advanced wastewater treatment.  相似文献   
2.
The photocatalytic degradation of an azo reactive dye, Reactive Yellow 84 (RY84), in aqueous solutions using industrial titanium dioxide coated non-woven paper was studied. The experiments were carried out to investigate the factors that influence the dye photocatalytic degradation, such as adsorption, initial concentration of dye, temperature, and solution pH. The experimental results show that adsorption is an important parameter controlling the apparent kinetics constant of degradation. The photocatalytic degradation rate was favored by a high concentration of solution in respect to Langmuir–Hinshelwood model. The degradation was enhanced by the temperature and was favored in acidic pH range.  相似文献   
3.
Multicast communications concern the transfer of data among multiple users. Multicast communications can be provided at the network layer—an example is IP multicast—or at the application layer, also called overlay multicast. An important issue in multicast communications is to control how different users—senders, receivers, and delivery nodes—access the transmitted data as well as the network resources. Many researchers have proposed solutions addressing access control in IP multicast. However, little attention has been paid to overlay multicast. In this paper, we investigate the access control issues in overlay multicast and present OMAC: a new solution to address these issues. OMAC provides access control for senders, receivers, and delivery nodes in overlay multicast. The proposed architecture, which is based on symmetric key cryptosystem, centralizes the authentication process in one server whereas it distributes the authorization process among the delivery nodes. Moreover, delivery nodes are utilized as a buffer zone between end systems and the authentication server, making it less exposed to malicious end systems. To evaluate our work, we have used simulation to compare the performance of OMAC against previous solutions. Results of the simulation show that OMAC outperforms previous multicast access control schemes. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
4.
Gourdache  Samir  Bilami  Azeddine  Barka  Kamel 《Wireless Networks》2020,26(1):431-447

Massive capacity demand is a major impetus behind the advances, in various ways, of today and near future wireless communication networks. To face this challenge, more wireless spectrum is needed, efficient usage of this spectrum is necessary, and adequate architectures are required. In this paper, we present a conceptual solution based on a cognitive-radio-inspired cellular network, for integrating idle spectrum resources of different wireless networks into a single mobile heterogeneous wireless network. We describe the conceptual architecture of this integrating network, referred to as Integrating cognitive-radio-inspired cellular network (I-CRICNet), and present a cooperative spectrum-harvesting scheme that keeps the former supplied with spectrum resources. In the latter scheme, we make extensive use of cross-correlated sequences (CSSs), for events signaling purposes. This choice is motived by the particularly interesting characteristics of the CSSs, namely, duration shortness, robustness to bad radio conditions, detection rather than decoding, and low probability of collision. As an illustration, we propose a reporting and detection scheme, in the context of OFDMA systems, and provide performance results from simulations to validate our proposal.

  相似文献   
5.
(1) Background: Due to human activities, greenhouse gas (GHG) concentrations in the atmosphere are constantly rising, causing the greenhouse effect. Among GHGs, carbon dioxide (CO2) is responsible for about two-thirds of the total energy imbalance which is the origin of the increase in the Earth’s temperature. (2) Methods: In this field, we describe the development of periodic mesoporous organosilica nanoparticles (PMO NPs) used to capture and store CO2 present in the atmosphere. Several types of PMO NP (bis(triethoxysilyl)ethane (BTEE) as matrix, co-condensed with trialkoxysilylated aminopyridine (py) and trialkoxysilylated bipyridine (Etbipy and iPrbipy)) were synthesized by means of the sol-gel procedure, then characterized with different techniques (DLS, TEM, FTIR, BET). A systematic evaluation of CO2 adsorption was carried out at 298 K and 273 K, at low pressure. (3) Results: The best values of CO2 adsorption were obtained with 6% bipyridine: 1.045 mmol·g−1 at 298 K and 2.26 mmol·g−1 at 273 K. (4) Conclusions: The synthetized BTEE/aminopyridine or bipyridine PMO NPs showed significant results and could be promising for carbon capture and storage (CCS) application.  相似文献   
6.
In this research article, ZnO–Al2O3–CeO2–Ce2O3 mixed metal oxides phases were prepared by calcination of Zn–Al/Ce–CO3 layered double hydroxides (LDH) precursors, and evaluated for the photocatalytic degradation of methyl orange (MO) as a model textile dye from aqueous solution under UV irradiation. First, Zn–Al–CO3 and a series of Zn–Al/Ce–CO3 with different Ce content (5, 10, 15, 20%) were synthesized through co-precipitation method at Zn/(Al+Ce) molar ratio (r) of 3, then subjected to calcination at 500 °C for 6 h. Samples were characterized by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy coupled with energy dispersive X-ray analysis and pH point of zero charge. The experimental results of the photodegradation reveal that the photocatalyst developed from Zn–Al–Ce10%-CO3 LDH exhibits the highest photocatalytic activity, with a degradation efficiency of 99.8% after 300 min of irradiation. This performance was mainly ascribed to the presence of difference state of Ce, leading a highest separation efficiency of electrons and holes. The recycling tests suggests a much high photostability and reusability of the photocatalyst.  相似文献   
7.
In this paper, we present a multidomain and multi-method coupling scheme called FACTOPO, based on generalized scattering matrix computations on three-dimensional (3-D) subdomains. The global target Ω is split in NV subdomains (Vi)(i=1, NV), separated by NI fictitious surfaces (Γ j)(j=1,NI). We use a modal representation of the tangent fields on the interfaces. In each domain, the generalized scattering matrix Si is computed with different methods such as the 3-D finite-element method (FEM) or the electric field integral equation (EFIE). This coupling scheme leads to an important reduction in computational resources, especially for cavities with one dimension much larger than the other two. The advantages of this formulation for parametric studies is illustrated by two cases: computing the RCS of an air-intake terminated with a flat PEC or a fan (CHANNEL) and of an antenna structure coupled to an electronic feed with a varying parameter (DENEB). Numerical as well as experimental results are presented  相似文献   
8.
The adsorption of a reactive dye, Reactive Yellow 84, from aqueous solution onto synthesized hydroxyapatite was investigated. The experiments were carried out to investigate the factors that influence the dye uptake by the adsorbent, such as the contact time under agitation, absorbent dosage, initial dye concentration, temperature and pH of dye solution. The experimental results show that the amount of dye adsorbed increases with an increase in the amount of hydroxyapatite. The maximum adsorption occurred at the pH value of 5. The equilibrium uptake was increased with an increase in the initial dye concentration in solution. The experimental isotherm data were analyzed using Langmuir isotherm equation. The maximum monolayer adsorption capacity was 50.25 mg/g. The adsorption has a low temperature dependency and was endothermic in nature with an enthalpy of adsorption of 2.17 kJ mol−1.  相似文献   
9.
Pseudomonas lipopeptides (Ps-LPs) play crucial roles in bacterial physiology, host–microbe interactions and plant disease control. Beneficial LP producers have mainly been isolated from the rhizosphere, phyllosphere and from bulk soils. Despite their wide geographic distribution and host range, emerging evidence suggests that LP-producing pseudomonads and their corresponding molecules display tight specificity and follow a phylogenetic distribution. About a decade ago, biocontrol LPs were mainly reported from the P. fluorescens group, but this has drastically advanced due to increased LP diversity research. On the one hand, the presence of a close-knit relationship between Pseudomonas taxonomy and the molecule produced may provide a startup toolbox for the delineation of unknown LPs into existing (or novel) LP groups. Furthermore, a taxonomy–molecule match may facilitate decisions regarding antimicrobial activity profiling and subsequent agricultural relevance of such LPs. In this review, we highlight and discuss the production of beneficial Ps-LPs by strains situated within unique taxonomic groups and the lineage-specificity and coevolution of this relationship. We also chronicle the antimicrobial activity demonstrated by these biomolecules in limited plant systems compared with multiple in vitro assays. Our review further stresses the need to systematically elucidate the roles of diverse Ps-LP groups in direct plant–pathogen interactions and in the enhancement of plant innate immunity.  相似文献   
10.
Rare sugars are monosaccharides with a limited availability in the nature and almost unknown biological functions. The use of industrial enzymatic and microbial processes greatly reduced their production costs, making research on these molecules more accessible. Since then, the number of studies on their medical/clinical applications grew and rare sugars emerged as potential candidates to replace conventional sugars in human nutrition thanks to their beneficial health effects. More recently, the potential use of rare sugars in agriculture was also highlighted. However, overviews and critical evaluations on this topic are missing. This review aims to provide the current knowledge about the effects of rare sugars on the organisms of the farming ecosystem, with an emphasis on their mode of action and practical use as an innovative tool for sustainable agriculture. Some rare sugars can impact the plant growth and immune responses by affecting metabolic homeostasis and the hormonal signaling pathways. These properties could be used for the development of new herbicides, plant growth regulators and resistance inducers. Other rare sugars also showed antinutritional properties on some phytopathogens and biocidal activity against some plant pests, highlighting their promising potential for the development of new sustainable pesticides. Their low risk for human health also makes them safe and ecofriendly alternatives to agrochemicals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号