首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   48篇
  免费   1篇
  国内免费   1篇
化学   29篇
数学   3篇
物理学   10篇
无线电   8篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2020年   6篇
  2019年   3篇
  2018年   1篇
  2016年   5篇
  2015年   2篇
  2014年   8篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2009年   1篇
  2008年   1篇
  2006年   3篇
  2005年   2篇
  2003年   1篇
排序方式: 共有50条查询结果,搜索用时 31 毫秒
1.
Complexes of copper(II), nickel(II), cobalt(II), and zinc(II) with 2-[2-(6-methylbenzothiazolyl)azo]-5-dimethylaminobenzoic acid have been prepared and characterized by elemental analysis, vibrational spectra, magnetic susceptibility measurements, conductance measurements and e.p.r. spectra. Stability constants have been evaluated potentiometrically. Electronic spectra, magnetic susceptibility measurements and molecular modeling studies support a distorted square planar geometry around the metal ions. Vibrational spectra indicate the coordination of the azo group, nitrogen of benzothiazole, the carboxylate anion and the acetate ion on complexation with the metal ion. All complexes are found to be monomers. The stability of the complexes follow the order: copper(II) > nickel(II) > cobalt(II) > zinc(II).  相似文献   
2.
Understanding the fundamental facts behind dynamicity of catalytic processes has been a longstanding quest across disciplines. Herein, we report self-assembly of catalytically active gold nanorods that can be regulated by tuning its reactivity towards a proton transfer reaction at different pH. Unlike substrate-induced templating and co-operativity, the enhanced aggregation rate is due to alteration of catalytic surface charge only during reactivity as negatively charged transition state of reactant (5-nitrobenzisoxazole) is formed on positively charged nanorod while undergoing a concerted E2-pathway. Herein, enhanced diffusivity during catalytic processes might also act as an additional contributing factor. Furthermore, we have also shown that nanosized hydrophobic cavities of clustered nanorods can also efficiently accelerate the rate of an aromatic nucleophilic substitution reaction, which also demonstrates a catalytic phenomenon that can lead to cascading of other reactions where substrates and products of the starting reactions are not directly involved.  相似文献   
3.
Free base and cobalt(II) complexes of six meso-tetraphenylporphyrinoids containing nonpyrrolic heterocycles and of three meso-thienylporphyrins were investigated using electrospray ionization tandem mass spectrometry (ESI-MS/MS). Their fragmentation was studied in a quadrupole ion trap as a function of the porphyrinoid macrocycle structure and compared with the fragmentation behavior of the benchmark compound meso-tetraphenylporphyrin. In situ oxidation of the neutral cobalt(II) complexes under ESI conditions produced singly charged cobalt(III) porphyrinoid ions; the free bases were ionized by protonation. For the porphyrinoids with an intact porphyrin core, the major fragmentation pathways observed were the losses of the meso-substituent (for meso-phenyl groups) and characteristic fragmentations of one or more meso-substituents (for the meso-thienyl group). Complex fragmentation pathways were observed for porphyrinoids with modifications to the porphyrin core but chemically reasonable structures could be assigned to most fragments, thus delineating general patterns for the behavior of pyrrole-modified porphyrins under CID conditions.
Figure
?  相似文献   
4.
Our work is focused on facile synthesis and modification of amylopectin‐grafted block copolymers by using reversible addition?fragmentation chain transfer (RAFT) polymerization technique. This technique yields polymers with controlled molecular weight and low polydispersity indexes and is feasible with a wide range of monomers. Five different grades of amylopectin‐grafted polymethacrylic acid and polyacrylamide block copolymers have been synthesized via RAFT, by varying the amount of acrylamide employing amylopectin‐based macro chain transfer agent. Graft copolymers have been upgraded as smart responsive graft copolymers, through the incorporation of iron oxide nanoparticles (IONPs) via condensation reaction. The polymeric materials have been extensively characterized by energy‐dispersive X‐ray analysis, Fourier transform infrared spectroscopy, proton magnetic resonance spectroscopy, scanning electron microscopy, ultraviolet‐visible spectroscopy, gel permeation chromatography, transmission electron microscopy, thermogravimetric analysis, and X‐ray diffraction analysis. Normal and responsive graft copolymers have been studied for removal of model contaminant (kaolin), and responsive graft copolymers have been used to remove methylene blue dye (without using any adsorbent) from water by applying external magnetic field. The upgraded block copolymers have shown best performance in wastewater treatment.  相似文献   
5.
The present work describes an exciting method for the selective and sensitive determination of calcitonin in human blood serum samples. Adopting the surface molecular imprinting technique, a calcitonin-imprinted polymer was prepared on the surface of the zinc oxide nanostructure. Firstly, a biocompatible tyrosine derivative as a monomer was grafted onto the surface of zinc oxide nanostructure followed by their polymerization on vinyl functionalized electrode surface by activator regenerated by electron transfer–atom transfer radical polymerization (ARGET–ATRP) technique. Such sensor can predict the small change in the concentration of calcitonin in the human body and it may also consider to be as cost-effective, renewable, disposable, and reliable for clinical studies having no such cross-reactivity and matrix effect from real samples. The morphologies and properties of the proposed sensor were characterized by scanning electron microscopy, cyclic voltammetry, difference pulse voltammetry and chronocoulometry. The linear working range was found to be 9.99 ng L−1 to 7.919 mg L−1 and the detection limit as low as 3.09 ± 0.01 ng L−1 (standard deviation for three replicate measurements) (S/N = 3).  相似文献   
6.
Synthesis of a novel class of multinucleate pyrimidine chalcogen (S/Se/Te) derivatives has been successfully attempted for the first time by the selective substitution of chlorine at the C-2 position of 2,4-dichloropyrimidine with nucleophilic dichalcogenide anion E22− (E = S, Se, Te) to afford bis[4-chloro-2-pyrimidyl] dichalcogenide. The highly electrophilic nature of 2,4-dichloropyrimidine compared to aryl chlorides has been further exploited to prepare a variety of 4-chloro-2-(arylchalcogenyl) pyrimidine compounds by substituting the chlorine exclusively at the C-2 position of 2,4-dichloropyrimidine with a variety of chalcogen bearing aryl anions ArE (Ar = phenyl, 1-naphthyl, p-tolyl, 4,6-dimethyl-2-pyrimidyl, 2-pyridyl, 4-methyl-2-pyridyl). All the newly prepared symmetrical and unsymmetrical pyrimidyl chalcogen compounds have been thoroughly characterized with the help of various spectroscopic techniques viz., NMR (1H, 13C, 77Se), FT-IR and mass spectrometry (in representative cases). The crystal structures of 4-chloro-2-(phenylselanyl) pyrimidine and 2-(p-tolylselanyl)-4-chloropyrimidine have been determined by X-ray crystallography.  相似文献   
7.
This paper presents the analytical modeling of subthreshold current and subthreshold swing of short- channel fully-depleted (FD) strained-Si-on-insulator (SSOI) MOSFETs having vertical Gaussian-like doping pro- file in the channel. The subthreshold current and subthreshold swing have been derived using the parabolic approx- imation method. In addition to the effect of strain on silicon layer, various other device parameters such as channel length (L), gate-oxide thickness (tox), strained-Si channel thickness (ts_Si), peak doping concentration (Np), project range (Rp) and straggle (op) of the Gaussian profile have been considered while predicting the device characteris- tics. The present work may help to overcome the degradation in subthreshold characteristics with strain engineering. These subthreshold current and swing models provide valuable information for strained-Si MOSFET design. Ac- curacy of the proposed models is verified using the commercially available ATLASTM, a two-dimensional (2D) device simulator from SILVACO.  相似文献   
8.
The self-assembly of cyclic D,L-alpha-peptides into hollow nanotubes is a crucial mechanistic step in their application as antibacterial and drug-delivery agents. To understand this process, molecular dynamics (MD) simulations were performed on dimers of cyclic peptides formed from cyclo [(-L-Trp-D-N-MeLeu-)4-]2 and cyclo [(-L-Trp-D-Leu-)4-]2 subunits in nonpolar (nonane) and polar (water) solvent. The dimers were observed to be stable only in nonpolar solvent over the full 10 ns length of the MD trajectory. The behavior of the dimers in different solvents is rationalized in terms of the intersubunit hydrogen bonding, hydrogen bonding with the solvent, and planarity of the rings. It is shown that the phi and psi dihedral angles of a single uncapped ring in nonane lie in the beta-sheet region of the Ramachandran plot, and the ring stays in a flat conformation. Steered MD (SMD) simulations based on Jarzynski's equality were performed to obtain the potential of mean force as a function of the distance between the two rings of the capped dimer in nonane. It is also shown that a single peptide subunit prefers to reside close to the nonane/water interface rather than in bulk solvent because of the amphiphilic character of the peptide ring. The present MD results build the foundation for using MD simulations to study the mechanism of the formation of cyclic peptide nanotubes in lipid bilayers.  相似文献   
9.
This paper improves the performance of 60‐GHz wireless optical system including radio over fibre (RoF) and radio over free space optics (RoFSO), based on novel reverse‐parallel (RP) hybrid modulation scheme. This scheme combines the chromatic dispersion compensation technique of parallel modulation with energy efficiency manipulation technique of reverse modulation. Superior functioning of RoFSO is provided with reverse modulation compared with normal modulation. Comparative investigations are performed by loading 60‐GHz RF signal with 2.5 and 10‐Gbps data and modulating it with both reverse and hybrid modulators. Hybrid modulation performed better with improved BER of 10?23 at distance of 51 km for 2.5‐Gbps data compared with reverse modulation with BER of 10?7.  相似文献   
10.
Diatoms are single‐celled microalgae that produce a large variety of hierarchically porous, silica‐based microparticles as cell wall material. The presence of genetically encoded silica nanopatterns endows the biosilica with favorable properties for a wide range of applications including catalysis, chemical sensing, photonics, and drug delivery. Enhancing the performance of diatom biosilica requires i) a better understanding of the structure–property relationship in this material, and ii) methods that enable the manipulation of the biosilica structure and properties in a targeted manner. Here, genetic engineering of the diatom Thalassiosira pseudonana is employed to immobilize enzymes (glucose oxidase and horseradish peroxidase) into structurally distinct regions of the biosilica, which are termed valves and girdle bands. Remarkably, glucose oxidase in girdle bands exhibits >3‐fold higher catalytic activities compared to its location in valves. It is demonstrated through enzyme accessibility studies, protein engineering, and genetic engineering of biosilica morphology that the divergent enzyme activities are caused by the differences in the inherent silica nanopatterns of valves and girdle bands. This work highlights the importance of silica nanoscale architecture for the activity of immobilized enzymes and provides unprecedented tools for the biotechnological production of silica microparticles with tailored catalytic activities and anisotropic functionalities.  相似文献   
1 [2] [3] [4] [5] 下一页 » 末  页»
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号