首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   201篇
  免费   4篇
化学   126篇
力学   4篇
数学   44篇
物理学   27篇
无线电   4篇
  2024年   1篇
  2022年   8篇
  2021年   15篇
  2020年   9篇
  2019年   11篇
  2018年   15篇
  2017年   13篇
  2016年   12篇
  2015年   7篇
  2014年   9篇
  2013年   17篇
  2012年   13篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   7篇
  2007年   6篇
  2005年   2篇
  2004年   3篇
  2003年   2篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   2篇
  1996年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1987年   2篇
  1986年   1篇
  1984年   1篇
  1978年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
  1968年   1篇
排序方式: 共有205条查询结果,搜索用时 937 毫秒
1.
Decomposition of formic and oxalic acid and of sodium formate and sodium oxalate (0.1 M solutions) in an electrodeless electrochemical reaction was studied. The oxidation kinetics was analyzed in terms of the previously developed model. The decomposition yields of formic acid and sodium formate are 0.5 and 1 molecule/(100 eV), respectively, which is comparable with the radiation-chemical decomposition yield, taking into account the installation efficiency.  相似文献   
2.
How far can we push the limits in removing stereoelectronic protection from an unstable intermediate? We address this question by exploring the interplay between the primary and secondary stereoelectronic effects in the Baeyer–Villiger (BV) rearrangement by experimental and computational studies of γ-OR-substituted γ-peroxylactones, the previously elusive non-strained Criegee intermediates (CI). These new cyclic peroxides were synthesized by the peroxidation of γ-ketoesters followed by in situ cyclization using a BF3·Et2O/H2O2 system. Although the primary effect (alignment of the migrating C–Rm bond with the breaking O–O bond) is active in the 6-membered ring, weakening of the secondary effect (donation from the OR lone pair to the breaking C–Rm bond) provides sufficient kinetic stabilization to allow the formation and isolation of stable γ-hydroperoxy-γ-peroxylactones with a methyl-substituent in the C6-position. Furthermore, supplementary protection is also provided by reactant stabilization originating from two new stereoelectronic factors, both identified and quantified for the first time in the present work. First, an unexpected boat preference in the γ-hydroperoxy-γ-peroxylactones weakens the primary stereoelectronic effects and introduces a ∼2 kcal mol−1 Curtin–Hammett penalty for reacquiring the more reactive chair conformation. Second, activation of the secondary stereoelectronic effect in the TS comes with a ∼2–3 kcal mol−1 penalty for giving up the exo-anomeric stabilization in the 6-membered Criegee intermediate. Together, the three new stereoelectronic factors (inverse α-effect, misalignment of reacting bonds in the boat conformation, and the exo-anomeric effect) illustrate the richness of stereoelectronic patterns in peroxide chemistry and provide experimentally significant kinetic stabilization to this new class of bisperoxides. Furthermore, mild reduction of γ-hydroperoxy-γ-peroxylactone with Ph3P produced an isolable γ-hydroxy-γ-peroxylactone, the first example of a structurally unencumbered CI where neither the primary nor the secondary stereoelectronic effect are impeded. Although this compound is relatively unstable, it does not undergo the BV reaction and instead follows a new mode of reactivity for the CI – a ring-opening process.

Protecting stereoelectronic effects prevent Baeyer–Villiger rearrangement and stabilize γ-OX-γ-peroxylactones (X = H, OH), the previously elusive non-strained Criegee intermediates.  相似文献   
3.
ZnO biointerfaces with serum albumin have attracted noticeable attention due to the increasing interest in developing ZnO-based materials for biomedical applications. ZnO surface morphology and chemistry are expected to play a critical role on the structural, optical, and electronic properties of albumin-ZnO complexes. Yet there are still large gaps in the understanding of these biological interfaces. Herein we comprehensively elucidate the interactions at such interfaces by using atomic force microscopy and nanoshaving experiments to determine roughness, thickness, and adhesion properties of BSA layers adsorbed on the most typical polar and non-polar ZnO single-crystal facets. These experiments are corroborated by force field (FF) and density-functional tight-binding (DFTB) calculations on ZnO-BSA interfaces. We show that BSA adsorbs on all the studied ZnO surfaces while interactions of BSA with ZnO are found to be considerably affected by the atomic surface structure of ZnO. BSA layers on the surface have the highest roughness and thickness, hinting at a specific upright BSA arrangement. BSA layers on surface have the strongest binding, which is well correlated with DFTB simulations showing atomic rearrangement and bonding between specific amino acids (AAs) and ZnO. Besides the structural properties, the ZnO interaction with these AAs also controls the charge transfer and HOMO-LUMO energy positions in the BSA-ZnO complexes. This ZnO facet-specific protein binding and related structural and electronic effects can be useful for improving the design and functionality of ZnO-based materials and devices.  相似文献   
4.
Plasma Chemistry and Plasma Processing - The yield of redox reactions (Fe2+ oxidation and Mn7+ reduction in aqueous solutions) under the action of hot plasma radiation in liquid and species formed...  相似文献   
5.
6.
7.
The physical and mechanical properties of nitrile–butadiene rubber (NBR) composites with N-cetylpyridinium bromide-carbon black (CPB-CB) were investigated. Addition of 5 parts per hundred rubber (phr) of CPB-CB into NBR improved the tensile strength by 124%, vulcanization rate by 41%, shore hardness by 15%, and decreased the volumetric wear by 7% compared to those of the base rubber-CB composite.  相似文献   
8.
9.
10.

Biocompatibility, biodegradation, good sorption characteristics, and unique structure of highly oxidized bacterial cellulose (OBC) are of great interest for the development of new drug delivery systems. In this study, OBC with 9.6, 13.0 and 19.5% carboxyl groups for 5, 20, and 48 h of synthesis, respectively, was successfully obtained using the HNO3/H3PO4–NaNO2. The results of morphological analysis showed that with an increase in the number of carboxyl groups, OBC fibers become thicker and rougher. Fourier-transform infrared spectroscopy showed the formation of carboxyl groups in the OBC after the oxidation reaction. The crystallinity of the samples according to X-Ray diffraction analysis decreased with increasing reaction time. The immobilization of cephalexin in the polymer matrix was studied in detail, it took 120 min to achieve balance in the solution with a concentration of 1 mg/ml, and the maximum amount of a sorbed antibiotic reached 43 mg/g. The drug release in vitro at 37 °C in PBS with pH 7.4 and 2.0 was prolonged. Various models were used to describe the release mechanism, the best of which was Ritger-Peppas with a diffusion exponent value ranging from 0.743 to 0.830, which explains the drug release mainly through non-Fickian diffusional release. The cephalexin-loaded OBC showed high antimicrobial activity against Gram-negative bacteria Escherichia coli and Gram-positive bacteria Staphylococcus aureus. The structure and properties of the resulting highly oxidized cellulose make it an excellent candidate as a drug delivery carrier with prolonged antimicrobial drug release characteristics.

  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号