首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
无线电   7篇
  2022年   1篇
  2021年   2篇
  2019年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.

In this paper, a novel full-duplex overlay cognitive wireless powered communication network (FD-OCWPCN) is proposed where a full-duplex (FD) hybrid-access point (H-AP) supports the full access of all battery-free secondary users (SUs). The H-AP broadcasts wireless power to empower the nearby SUs in the downlink (DL) phase while decoding the information transmitted uplink (UL) phase by the SUs, simultaneously. To overcome the self-interference (SI) phenomenon in FD-OCWPCN, the problem of maximizing the system sum-throughput with optimal UL-DL transmission/reception time and H-AP’s transmit power allocation is considered. This problem is non-convex under perfect/imperfect SI cancelation (SIC), so we employ the active interference temperature control and the gradient projection techniques to effectively reduce it into a convex problem. Closed-form expressions for the perfect/imperfect SIC cases are also derived. To assess the performance of the FD-OCWPCN, a comparison with a half-duplex OCWPCN (HD-OCWPCN) is provided. The achievable average sum-throughput for different FD/HD-OCWPCN is compared in the context of the average and peak transmit power at the H-AP, the number of SUs, path loss exponent and fairness metric. The simulation results depict the superiority of the FD-OCWPCN over the HD-OCWPCN for the perfect SIC and the effective imperfect SIC.

  相似文献   
2.
Telecommunication Systems - In this paper, a physical-layer network coding (PNC) method is offered for a two-way relay network with spatial modulation (SM) for source node and relay node. For this...  相似文献   
3.
Telecommunication Systems - This paper considers simultaneous wireless information and power transfer enabled full-duplex multi-user multiple-input multiple-output cognitive networks. By taking...  相似文献   
4.
This paper addresses throughput and delay gains resulting from network coding (NC) used to complement multi-packet reception (MPR) in a single-relay multi-user wireless network in saturated and non-saturated traffic conditions. The cross-layer analytical framework is presented in analyzing the performance of the encode-and-forward (EF) relaying wireless networks, where employed at the physical layer under the conditions of unsaturated traffic and finite-length queue at the data link layer. Considering the characteristics of EF relaying protocol at the physical layer, first a model of a two-hop EF relaying wireless channel is proposed as an equivalent extended multi-dimensional Markovian state transition model in queuing analysis. We show that the initial transmissions and the back-filling process can be greatly sped up through a combination of NC and MPR. We provided closed-form expressions for two-hop unbalanced bidirectional traffic cases both with and without NC even if the buffers on nodes are unsaturated. The analytical results are mainly derived by solving queuing systems for the buffer behavior at the relay node. The model has been evaluated through simulations and in comparison with the existing analytical model. Simulation results show good agreement with the analytical results.  相似文献   
5.
It is well known that power control error (PCE) is a critical issue in CDMA cellular systems. In this paper, the bit error rate (BER) of a direct sequence-code division multiple access (DS-CDMA) receiver with imperfect power control, adaptive beamforming, and voice activity is derived in frequency-selective Nakagami fading channels. We discuss the effects of PCE, Nakagami-m fading parameter, and channel’s multipath intensity profile as average signal strength and rate of average power decay and their effects on the BER performance of DS-CDMA cellular systems. In this paper, the RAKE receiver consists of three stages. In the first stage, with conjugate gradient adaptive beamforming algorithm, the desired users’ signal in an arbitrary path is passed and the inter-path interference is canceled in other paths in each RAKE finger. Also in this stage, the multiple access interference (MAI) from other users is reduced. Thus, the matched filter (MF) can be used for the MAI reduction in each RAKE finger in the second stage. In the third stage, the output signals from the MFs are combined according to the conventional maximal ratio combining principle and then are fed into the decision circuit for the desired user. How the Nakagami fading parameters, power control imperfections, or the number of resolvable paths affect the reverse link capacity of the system is discussed in detail. Analytical and simulation results are also given for systems with different processing gains and number of BSs in the cell-selection process with various Nakagami fading parameters.  相似文献   
6.

In this paper, we investigate the impact of channel estimation errors on the physical layer security of an overlaying device-to-device (D2D) wireless network with an amplify-and-forward untrusted relay. An untrusted relay assists D2D communication while may capture the confidential data. Under the practical assumption of imperfect channel state information (ICSI) for the relay-to-receiver D2D link, we take into account optimal power allocation (OPA) problem to maximize the achievable secrecy rate of two different scenarios which are without jamming and with friendly jamming. Based on these OPA solutions, we study the secrecy performance of the two scenarios by driving closed-form expressions for the ergodic secrecy rate (ESR) in Rayleigh fading channel. We also calculate the high signal-to-noise ratio (SNR) slope and high SNR power offset of the optimized scenarios by finding the asymptotic ESR. Numerical results confirm the accuracy of our proposed theoretical analysis. The results also demonstrate that our proposed OPAs enhance the ESR performance compared with other power allocation techniques. Moreover, they show the effect of ICSI on the ESR such that as channel estimation error grows, the ESR performance reduction is occurred.

  相似文献   
7.
The interference reduction capability of antenna arrays, base station assignment, and the power control algorithms have been considered separately as means to increase the capacity in wireless communication networks. In this paper, we propose smart step closed-loop power control (SSPC) algorithm and base station assignment method based on minimizing the transmitter power (BSA-MTP) technique for direct sequence-code division multiple access (DS-CDMA) receiver in a 2D urban environment. This receiver consists of conjugate gradient adaptive beamforming and matched filter in two stages using antenna arrays. In addition, we study an analytical approach for the evaluation of the impact of power control error (PCE) on the DS-CDMA cellular systems. The simulation results indicate that the SSPC algorithm and the BSA-MTP technique can significantly improve the network bit error rate in comparison with conventional methods. Our proposed methods can also significantly save total transmit power and extend battery life in mobile units. In addition, we show that the convergence speed of the SSPC algorithm is faster than that of conventional algorithms. Finally, we discuss two parameters of PCE and channel propagation conditions (path-loss parameter and variance of shadowing) and their effects on the capacity of the system via some computer simulations.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号