首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31965篇
  免费   1607篇
  国内免费   146篇
化学   16341篇
晶体学   254篇
力学   714篇
数学   2327篇
物理学   5993篇
无线电   8089篇
  2024年   50篇
  2023年   336篇
  2022年   437篇
  2021年   805篇
  2020年   621篇
  2019年   671篇
  2018年   594篇
  2017年   565篇
  2016年   1023篇
  2015年   793篇
  2014年   1162篇
  2013年   1859篇
  2012年   2069篇
  2011年   2277篇
  2010年   1531篇
  2009年   1535篇
  2008年   2114篇
  2007年   1890篇
  2006年   1899篇
  2005年   1670篇
  2004年   1487篇
  2003年   1329篇
  2002年   1189篇
  2001年   779篇
  2000年   712篇
  1999年   564篇
  1998年   404篇
  1997年   372篇
  1996年   402篇
  1995年   271篇
  1994年   261篇
  1993年   273篇
  1992年   217篇
  1991年   186篇
  1990年   173篇
  1989年   138篇
  1988年   105篇
  1987年   91篇
  1986年   57篇
  1985年   93篇
  1984年   64篇
  1983年   56篇
  1982年   75篇
  1981年   72篇
  1980年   42篇
  1979年   53篇
  1978年   52篇
  1976年   44篇
  1975年   39篇
  1974年   41篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
Silver nanoparticles (NPs) ranging in size from 40 to 100 nm were prepared in high yield by using an improved seed‐mediated method. The homogeneous Ag NPs were used as building blocks for 2D assembled Ag NP arrays by using an oil/water interface. A close‐packed 2D array of Ag NPs was fabricated by using packing molecules (3‐mercaptopropyltrimethoxysilane) to control the interparticle spacing. The homogeneous 2D Ag NP array exhibited a strong quadrupolar cooperative plasmon mode resonance and a dipolar red‐shift relative to individual Ag NPs suspended in solution. A well‐arranged 2D Ag NP array was embedded in polydimethylsiloxane film and, with biaxial stretching to control the interparticle distance, concomitant variations of the quadrupolar and dipolar couplings were observed. As the interparticle distance increased, the intensity of the quadrupolar cooperative plasmon mode resonance decreased and dipolar coupling completely disappeared. The local electric field of the 2D Ag NP array was calculated by using finite difference time domain simulation and qualitatively showed agreement with the experimental measurements.  相似文献   
2.
3.
Star copolymers have attracted significant interest due to their different characteristics compared with diblock copolymers, including higher critical micelle concentration, lower viscosity, unique spatial shape, or morphologies. Development of synthetic skills such as anionic polymerization and controlled radical polymerization have made it possible to make diverse architectures of polymers. Depending on the molecular architecture of the copolymer, numerous morphologies are possible, for instance, Archimedean tiling patterns and cylindrical microdomains at symmetric volume fraction for miktoarm star copolymers as well as asymmetric lamellar microdomains for star‐shaped copolymers, which have not been reported for linear block copolymers. In this review, we focus on morphologies and microphase separations of miktoarm (AmBn and ABC miktoarm) star copolymers and star‐shaped [(A‐b‐B)n] copolymers with nonlinear architecture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 1–21  相似文献   
4.
5.
Supramolecular polyurethane ureas are expected to have superior mechanical properties primarily due to the reversible, noncovalent interactions such as hydrogen bonding interactions. We synthesized polyurethane prepolymers from small molecular weight of poly(tetramethylene ether)glycol and isophorone diisocyanates, which were end capped with propylamine to synthesize polyurethane ureas with high contents of urea and urethane groups for hydrogen‐bonding formations to facilitate self‐healing. The effects of polyurethane urea molecular weight (3000 ≤ Mn ≤ 9000), crosslinking, and cutting direction were studied in terms of thermal, mechanical, and morphological properties with an emphasis on the self‐healing efficiency. It was found that the thermal self‐healability was more pronounced as the molecular weight of polyurethane urea decreased, showing a maximum of more than 96% with 3000 Mn when the sample was cut along the stretch direction. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 468–474  相似文献   
6.
The use of soft X-rays in a neutrahzer represents an alternative technique that could replace conventional radioactive sources.In this study,we evaluated the charging characteristics of a soft X-ray aerosol neutralize!".In addition,the results from the evaluation of the soft X-ray charger were compared with results obtained using a neutralizer incorporating an 241Am radioactive source.The tandem differential mobility analyzer technique was used previously to determine the size-dependent positive,negative,and neutral charge fractions of a soft X-ray neutralizer.This technique was used to show that the neutral fractions obtained using the soft X-ray charger agreed well with the predictions of bipolar diffusion charging theory,and that the soft X-ray charger could be used as a neutralizer for a scanning mobility particle sizer system.  相似文献   
7.
Efficient water electrolysis catalyst is highly demanded for the production of hydrogen as a sustainable energy fuel. It is reported that cobalt derived nanoparticle (CoS2, CoP, CoS|P) decorated reduced graphene oxide (rGO) composite aerogel catalysts for highly active and reliable hydrogen evolution reaction electrocatalysts. 7 nm level cobalt derived nanoparticles are synthesized over graphene aerogel surfaces with excellent surface coverage and maximal expose of active sites. CoS|P/rGO hybrid aerogel composites show an excellent catalytic activity with overpotential of ≈169 mV at a current density of ≈10 mA cm?2. Accordingly, efficient charge transfer is attained with Tafel slope of ≈52 mV dec?1 and a charge transfer resistance (Rct) of ≈12 Ω. This work suggests a viable route toward ultrasmall, uniform nanoparticles decorated graphene surfaces with well‐controlled chemical compositions, which can be generally useful for various applications commonly requiring large exposure of active surface area as well as robust interparticle charger transfer.  相似文献   
8.
Frequency Insertion Strategy for Channel Assignment Problem   总被引:1,自引:0,他引:1  
This paper presents a new heuristic method for quickly finding a good feasible solution to the channel assignment problem (CAP). Like many other greedy-type heuristics for CAP, the proposed method also assigns a frequency to a call, one at a time. Hence, the method requires computational time that increases only linear to the number of calls. However, what distinguishes the method from others is that it starts with a narrow enough frequency band so as to provoke violations of constraints that we need to comply with in order to avoid radio interference. Each violation is then resolved by inserting frequencies at the most appropriate positions so that the band of frequencies expands minimally. An extensive computational experiment using a set of randomly generated problems as well as the Philadelphia benchmark instances shows that the proposed method perform statistically better than existing methods of its kind and even yields optimum solutions to most of Philadelphia benchmark instances among which two cases are reported for the first time ever, in this paper. Won-Young Shin was born in Busan, Korea in 1978. He received B.S. in industrial engineering from Pohang University of Science and Technology (POSTECH) in 2001 and M.S in operation research and applied statistics from POSTECH in 2003. Since 2003 he has been a researcher of Agency for Defense Development (ADD) in Korea. He is interested in optimization of communication system and applied statistics. Soo Y. Chang is an associate professor in the Department of Industrial Engineering at Pohang University of Science and Technology (POSTECH), Pohang, Korea. He teaches linear programming, discrete optimization, network flows and operations research courses. His research interests include mathematical programming and scheduling. He has published in several journals including Discrete Applied Mathematics, Computers and Mathematics with Application, IIE Transactions, International Journal of Production Research, and so on. He is a member of Korean IIE, and ORMSS. Jaewook Lee is an assistant professor in the Department of Industrial Engineering at Pohang University of Science and Technology (POSTECH), Pohang, Korea. He received the B.S. degree in mathematics with honors from Seoul National University, and the Ph.D. degree from Cornell University in applied mathematics in 1993 and 1999, respectively. He is currently an assistant professor in the department of industrial engineering at the Pohang University of Science and Technology (POSTECH). His research interests include nonlinear systems, neural networks, nonlinear optimization, and their applications to data mining and financial engineering. Chi-Hyuck Jun was born in Seoul, Korea in 1954. He received B.S. in mineral and petroleum engineering from Seoul National University in 1977, M.S. in industrial engineering from Korea Advanced Institute of Science and Technology in 1979 and Ph.D. in operations research from University of California, Berkeley, in 1986. Since 1987 he has been with the department of industrial engineering, Pohang University of Science and Technology (POSTECH) and he is now a professor and the department head. He is interested in performance analysis of communication and production systems. He has published in several journals including IIE Transactions, IEEE Transactions, Queueing Systems and Chemometrics and Intelligent Laboratory Systems. He is a member of IEEE, INFORMS and ASQ.  相似文献   
9.
Namyong Kim 《ETRI Journal》2006,28(2):155-161
In this paper, we introduce an escalator (ESC) algorithm based on the least squares (LS) criterion. The proposed algorithm is relatively insensitive to the eigenvalue spread ratio (ESR) of an input signal and has a faster convergence speed than the conventional ESC algorithms. This algorithm exploits the fast adaptation ability of least squares methods and the orthogonalization property of the ESC structure. From the simulation results, the proposed algorithm shows superior convergence performance.  相似文献   
10.
Measurements of small-scale fading and path loss for long range RF tags   总被引:2,自引:0,他引:2  
RF modulated backscatter (RFMB), also known as modulated radar cross section or sigma modulation, is a RF transmission technique useful for short-range, low-data-rate applications, such as nonstop toll collection, electronic shelf tags, freight container identification and chassis identification in automobile manufacturing, that are constrained to have extremely low power requirements. The small-scale fading observed on the backscattered signal has deeper fades than the signal from a traditional one-way link of the same range in the same environment because the fading on the backscattered signal is the product of the fading on the off-board-generated carrier times the fading on the reflected signal. This paper considers the continuous wave (CW) type of RFMB, in which the interrogator transmitter and receiver antennas are different. This two-way link also doubles the path loss exponent of the one-way link. This paper presents the cumulative distribution functions for the measured small-scale fading and the measured path loss for short ranges in an indoor environment at 2.4 GHz over this type of link.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号