首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
化学   7篇
无线电   2篇
  2022年   3篇
  2021年   1篇
  2013年   1篇
  2011年   1篇
  2009年   2篇
  2006年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
Because of recent advances in the production and installation of photovoltaic (PV) systems, the international conformity of PV module performance measurement has become increasingly important. The increase in PV production sites is particularly significant in the Asian region. The present paper summarizes and discusses the results of a round‐robin intercomparison of crystalline silicon modules among national laboratories and certified testing laboratories in the Asian region conducted from 2009 to 2011. Most of the values of Pmax measured at the different laboratories were within a ±2% range, although some Pmax results showed differences of up to about 3%. This result is comparable to that obtained in the recent intercomparison among international laboratories. Possible sources of difference in the measured values of Isc, Voc, FF, and Pmax are discussed, for further improvement of international conformity in PV measurement technologies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
2.
Disposable electrodes were fabricated by coating chromium (5 nm) and gold (200 nm) on glass strips (5.0 mm×25.4 mm) and used in a label‐free immunosensor. Human serum albumin (HSA) and its antigen (anti‐HSA) were used as a model system. Electropolymerization of o‐phenylenediamine was used for the immobilization of anti‐HSA by covalent binding. A linear relationship was obtained in the range from 1.0×10?14 to 1.0×10?9 M with a limit of detection of 8.0×10?15 M. Each modified electrode can be reused up to 30 times. The developed system was applied for human serum samples and compared to Albumin BCG method.  相似文献   
3.
Ordered mesoporous rutile and anatase TiO2 samples are prepared using mesoporous silica SBA‐15 as template and freshly synthesized titanium nitrate and titanium chloride solutions as precursors. The rutile material formed from the nitrate solution is monocrystalline and contains minimal amounts of Si with a Si:Ti ratio of 0.031(4), whereas the anatase material formed from the chloride solution comprises nanocrystals and contains a higher content of Si with a Si:Ti ratio of 0.18(3). It is found that control of temperature and selection of Ti‐containing precursor play important roles in determining the crystal phase and crystallinity. A possible formation mechanism of porous crystalline TiO2 is suggested. Characterization of these porous materials is performed by XRD, HRTEM, and nitrogen adsorption/desorption. SBA‐15‐templated mesoporous rutile TiO2 exhibits a higher Li ion insertion capability than KIT‐6‐templated TiO2 due to its larger surface area. Likewise mesoporous anatase TiO2:SiO2 composite has a better photoactivity than bulk TiO2 or TiO2‐loaded SBA‐15 for bleaching methylene blue.  相似文献   
4.
Using a grinding method, nanocomposites of graphitic carbon nitride (g-C3N4) and magnesium aluminate (MgAl2O4) spinel were successfully synthesized for the photocatalytic degradation of methylene blue (MB) and methyl orange (MO). Variously formulated g-C3N4/MgAl2O4 nanocomposites were characterized by thermal gravimetric analysis (TGA), X-ray diffractometry (XRD), Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy equipped with energy dispersive spectroscopy (SEM/EDS), transmission electron microscopy (TEM) and surface area and micropore analysis (BET surface area). The g-C3N4 powder exhibited a nanosheet structure whereas the MgAl2O4 spinel comprised agglomerated nanoparticles. The optical properties of the g-C3N4/MgAl2O4 nanocomposites were investigated by diffuse reflectance spectroscopy (DRS). As the g-C3N4 loading content increased from 0 to 30%, the optical band gap energy of the nanocomposite decreased from 3.84 to 2.86 eV, the specific surface area decreased from 153.78 to 114.45 m2/g, and the porosity decreased from 0.447 to 0.347 cm3/g. A 20%g-C3N4/MgAl2O4 nanocomposite proved to be the most effective photocatalyst and degraded MB faster and more completely than MO. The degradation rates of both MO (0.0107 min?1) and MB (0.0386 min?1) in a mixed MO-MB system were greater than the degradation rates in their single systems. The key factor that improved the photocatalytic degradation of MO was the synergistic effect whereas the synergistic effect and photosensitization were the key factors that enhanced the photocatalytic degradation of MB. The g-C3N4/MgAl2O4 nanocomposite is suitable for the photocatalytic degradation of mixed dyes because its point of zero charge is neutral and it is stable and recyclable.  相似文献   
5.
Detection of ultra-trace amounts of antigens by label-free capacitive immunosensors was investigated using electrodes modified with silver nanoparticles (AgNPs) that allows for an increase in the amount of immobilized antibodies. The optimal amount of AgNPs that provided the highest immobilization yield was 48 pmol (in 2.0 mL). The performances of immunosensor electrodes for human serum albumin prepared with AgNPs, were compared to electrodes prepared with gold nanoparticles. The two systems provided the same linear range (1.0 × 10−18 to 1.0 × 10−10 M) and detection limit (1.0 × 10−18 M). The system with AgNPs was used to analyze albumin in urine samples and the results agreed well with the immunoturbidimetric assay (P > 0.05). Electrodes modified with AgNPs and appropriate antibodies were tested for their performances to detect analytes of different sizes. For a macromolecule (human serum albumin) the incorporation of AgNPs improved the detection limit from 100 to 1 aM. For small molecules, microcystin-LR and penicillin G, the detection limits were lowered from 100 and 10 fM to 10 and 0.7 fM, respectively. The high sensitivity and very low detection limits are potentially useful for the analysis of toxins or residues present in samples at ultra-trace levels and this method could easily be applied to other affinity pairs.  相似文献   
6.
Benzo(a)pyrene (BaP) has been recognized as a marker for the detection of carcinogenic polycyclic aromatic hydrocarbons. In this work, a novel monolithic solid-phase extraction (SPE) sorbent based on graphene oxide nanoparticles (GO) in starch-based cryogel composite (GO-Cry) was successfully prepared for BaP analysis. Rice flour and tapioca starch (gel precursors) were gelatinized in limewater (cross-linker) under alkaline conditions before addition of GO (filler) that can increase the ability to extract BaP up to 2.6-fold. BaP analysis had a linear range of 10 to 1000 µgL−1 with good linearity (R2 = 0.9971) and high sensitivity (4.1 ± 0.1 a.u./(µgL−1)). The limit of detection and limit of quantification were 4.21 ± 0.06 and 14.04 ± 0.19 µgL−1, respectively, with excellent precision (0.17 to 2.45%RSD). The accuracy in terms of recovery from spiked samples was in the range of 84 to 110% with no significant difference to a C18 cartridge. GO-Cry can be reproducibly prepared with 2.8%RSD from 4 lots and can be reused at least 10 times, which not only helps reduce the analysis costs (~0.41USD per analysis), but also reduces the resultant waste to the environment.  相似文献   
7.
A large amount of stable ecteinascidin 770 (1b) was isolated from the Thai tunicate, Ecteinascidia thurstoni, which was pretreated with potassium cyanide in buffer solution (pH 7), along with a minor metabolite, ecteinascidin 786 (1c). A number of 6'-O-acyl derivatives 3-19 and three diacetyl derivatives 2a-c of the stable 1b were prepared and evaluated for activity against human tumor cell lines HCT116, QG56, and DU145. Nitrogen-containing heterocyclic ester derivatives such as 12, 13, and 16-19 showed similar in vitro cytotoxicity to 1b, whereas the other derivatives were less cytotoxic than 1b. Furthermore, we discovered that the N-indole-3-carbonyl derivative of ecteinascidin 770 (22) has higher cytotoxicity than 1b.  相似文献   
8.
The accumulation of polyethylene terephthalate (PET) seriously harms the environment because of its high resistance to degradation. The recent discovery of the bacteria-secreted biodegradation enzyme, PETase, sheds light on PET recycling; however, the degradation efficiency is far from practical use. Here, in silico alanine scanning mutagenesis (ASM) and site-saturation mutagenesis (SSM) were employed to construct the protein sequence space from binding energy of the PETase–PET interaction to identify the number and position of mutation sites and their appropriate side-chain properties that could improve the PETase–PET interaction. The binding mechanisms of the potential PETase variant were investigated through atomistic molecular dynamics simulations. The results show that up to two mutation sites of PETase are preferable for use in protein engineering to enhance the PETase activity, and the proper side chain property depends on the mutation sites. The predicted variants agree well with prior experimental studies. Particularly, the PETase variants with S238C or Q119F could be a potential candidate for improving PETase. Our combination of in silico ASM and SSM could serve as an alternative protocol for protein engineering because of its simplicity and reliability. In addition, our findings could lead to PETase improvement, offering an important contribution towards a sustainable future.  相似文献   
9.
Portable colorimetric hydrogel test kits are newly developed for the on-site detection of nitrite, nitrate, and phosphate in water. Griess-doped hydrogel was prepared at the bottom of a 1.5 mL plastic tube for nitrite detection, a nitrate reduction film based on zinc powder was placed on the inner lid of a second 1.5 mL plastic tube for use in conjunction with the Griess-doped hydrogel for nitrate detection, and a molybdenum blue-based reagent was entrapped within a poly(vinyl alcohol) hydrogel matrix placed at the bottom of a third 1.5 mL plastic tube to detect phosphate. These test kits are usable with on-mobile digital image colorimetry (DIC) for the on-site determination of nutrients with good analytical performance. The detection limits were 0.02, 0.04, and 0.14 mg L−1 for nitrite, nitrate, and phosphate, respectively, with good accuracy (<4.8% relative error) and precision (<1.85% relative standard deviation). These test kits and on-mobile DIC were used for the on-site determination of nutrients in the Pak Bang and Bang Yai canals, the main canals in Phuket, Thailand. The concentrations of nitrite, nitrate, and phosphate were undetectable to 0.60 mg L−1, undetectable to 2.98 mg L−1, and undetectable to 0.52 mg L−1, respectively.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号