首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   2篇
化学   10篇
物理学   1篇
无线电   2篇
  2022年   1篇
  2021年   1篇
  2018年   2篇
  2014年   2篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2008年   1篇
排序方式: 共有13条查询结果,搜索用时 18 毫秒
1.
Particles produced by low-temperature desolvation of monodisperse microdroplets of analyte standard solution and nanoparticle suspensions in argon were collected on Si-wafers and studied applying scanning electron microscopy and X-ray microprobe techniques. At desolvation temperatures of about 150 °C, the particles from standard solutions are most often spherical and solid with good reproducibility and the analyte elements together with the unavoidable accompanying elements from trace contamination seem to be homogeneously distributed in the particles. However, there are surprising exceptions, particularly at higher temperatures, where analyte elements are separated in the particle by reduction or crystallization, as shown with Au and Ca standard solutions, respectively. Drying droplets of a diluted suspension of 250 nm gold particles at 200 °C revealed another interesting result, the production of relatively stable concave balloons of ∼ 3 µm in diameter including the Au particles. The balloon sheath was formed of compounds made of the contaminant elements in the suspension. The morphology of the particles is discussed in consideration of the Peclet number, the ratio of evaporation rate to analyte diffusion coefficient. The consequences of particle size and morphology for calibration purposes in nanoparticle characterization by ICP spectrometry are discussed.  相似文献   
2.
All nine isolated-pentagon-rule isomers of fullerene C(82) were investigated by the DFT method with the B3LYP functional at the 6-31G, 6-31G*, and 6-31+G* levels. The distribution of single, double, and delocalized π-bonds in the molecules of these isomers is shown for the first time. The obtained results are fully supported by DFT quantum-chemical calculations of electronic and geometrical structures of these isomers. The molecules of isomers 7 (C(3v)), 8 (C(3v)), and 9 (C(2v)) contain some radical substructures (such as the phenalenyl-radical substructure), which indicates that they are unstable and cannot be obtained as empty molecules. Thus, there is a possibility of obtaining them only as endohedral metallofullerenes or exohedral derivatives. Isomers 1 (C(2)), 2 (C(s)), 4 (C(s)), 5 (C(2)), and 6 (C(s)) with closed electronic shell are supposed to be stable, resembling isomer 3 (C(2)), which has just been extracted experimentally as an empty fullerene. We assume they can be produced as empty molecules.  相似文献   
3.
Iron oxide nanoparticles are formidable multifunctional systems capable of contrast enhancement in magnetic resonance imaging, guidance under remote fields, heat generation, and biodegradation. Yet, this potential is underutilized in that each function manifests at different nanoparticle sizes. Here, sub‐micrometer discoidal magnetic nanoconstructs are realized by confining 5 nm ultra‐small super‐paramagnetic iron oxide nanoparticles (USPIOs) within two different mesoporous structures, made out of silicon and polymers. These nanoconstructs exhibit transversal relaxivities up to ≈10 times (r 2 ≈ 835 mm ?1 s?1) higher than conventional USPIOs and, under external magnetic fields, collectively cooperate to amplify tumor accumulation. The boost in r 2 relaxivity arises from the formation of mesoscopic USPIO clusters within the porous matrix, inducing a local reduction in water molecule mobility as demonstrated via molecular dynamics simulations. The cooperative accumulation under static magnetic field derives from the large amount of iron that can be loaded per nanoconstuct (up to ≈65 fg) and the consequential generation of significant inter‐particle magnetic dipole interactions. In tumor bearing mice, the silicon‐based nanoconstructs provide MRI contrast enhancement at much smaller doses of iron (≈0.5 mg of Fe kg?1 animal) as compared to current practice.  相似文献   
4.
Graphite oxide (GO) is a lamellar substance with an ambiguous structure due to material complexity. Recently published GO-related studies employ only one out of several existing models to interpret the experimental data. Because the models are different, this leads to confusion in understanding the nature of the observed phenomena. Lessening the structural ambiguity would lead to further developments in functionalization and use of GO. Here, we show that the structure and properties of GO depend significantly on the quenching and purification procedures, rather than, as is commonly thought, on the type of graphite used or oxidation protocol. We introduce a new purification protocol that produces a product that we refer to as pristine GO (pGO) in contrast to the commonly known material that we will refer to as conventional GO (cGO). We explain the differences between pGO and cGO by transformations caused by reaction with water. We produce ultraviolet-visible spectroscopic, Fourier transform infrared spectroscopic, solid-state nuclear magnetic resonance spectroscopic, thermogravimetric, and scanning electron microscopic analytical evidence for the structure of pGO. This work provides a new explanation for the acidity of GO solutions and allows us to add critical details to existing GO models.  相似文献   
5.
Structural Chemistry - Based on our approach of theoretical modeling of the fullerene molecule electronic structures, an analysis of the molecular structures of isolated pentagon rule (IPR) isomer...  相似文献   
6.
All 19 Isolated‐Pentagon‐Rule isomers of fullerene C86 were investigated by Density Functional Theory (DFT) methods with B3LYP functional at 6‐31G, 6‐31G*, and 6‐31+G* levels. Preliminary distribution of single, double, and delocalized pi‐bonds in molecules of these isomers of fullerene C86 is fulfilled. Obtained results are perfectly supported by DFT quantum–chemical calculations of electronic and geometrical structures of these isomers. The main reason of instability of isomers 1, 3–15, 18, and 19 are phenalenyl‐radical substructures. Thus, there is a possibility to obtain them only as endohedral metallofullerenes or exohedral derivatives. Isomer 2 (C2) is unstable due to higher local molecular strain. It is shown that empty C86 may be produced and extracted only as isomers 16 (Cs) and 17 (C2). © 2010 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   
7.
The structures of 24 IPR‐isomers of C84 fullerene with distributed single, double and delocalized bonds are presented. Obtained results are fully supported by DFT quantum‐chemical calculations of electronic and geometrical structures of these isomers. Two reasons of instability of fullerene molecules are their radical origin and/or high local strain. Distortion of pentagons as well as hexagons with alternating single and double bonds is the most significant geometrical parameter reflecting local strain of a molecule. These distortions are measured as maximal dihedral angles of those cycles and reach 20 degrees in mostly deformed hexagons and pentagons. In contrast high values of dihedral angles in hexagons with delocalized π‐bonds are typical for stable isomers. Other geometric parameters such as valence angles, sums of valence angles and dihedral angles between approximate planes of fused rings have no marked influence on stability. The development of strain‐related criteria for fullerene stability will be helpful in the prediction which isomers might potentially be observable in experiment. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012  相似文献   
8.
Three isomers 23 (D2d), 1 (D2), and 20 (Td) of fullerene C84 have been investigated by PM3, HF/6‐31G*, and DFT methods with B3LYP functional at the 6‐31G and 6‐31G* levels. In this article we reveal for the first time that some distortion of hexagon (pentagon), measured as its maximal dihedral angles, caused by local molecular strains may serve as a new criterion of stability of fullerenes with closed shell. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号