首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
化学   10篇
数学   3篇
物理学   4篇
无线电   3篇
  2023年   1篇
  2022年   1篇
  2020年   1篇
  2016年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   4篇
  2010年   2篇
  2009年   1篇
  2007年   1篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
A routing protocol chooses one of the several paths (routes) from a source node to a destination node in the computer network, to send a packet of information. In this paper, we propose a new routing protocol, which we call st-routing protocol, based on st-numbering of a graph. The protocol fits well in noisy environments where robustness of routing using alternative paths is a major issue. The proposed routing protocol provides a systematic way to retry alternative paths without generating any duplicate packets. The protocol works for only those networks that can be represented by biconnected graphs.  相似文献   
2.
The iodide/triiodide redox couple plays a unique role in the dye-sensitized solar cell (DSSC). It is a necessary and unique part of every highly efficient DSSC published to date; alternative redox couples do not perform nearly as well. Hence, a detailed molecular-level understanding of its function is desirable. A density-functional theory (DFT) study has been carried out on the kinetic and thermodynamic aspects of the dye regeneration mechanism involving the iodide/triiodide redox couple and the prototypical N3 dye in the DSSC. The intermediate complexes between the oxidized dye and iodide have been identified. These are outer-sphere complexes of the general formula [dye(+)···I(-)]. Solvent effects are seen to play a critical role in the thermodynamics, whereas relativistic spin-orbit effects are less important. Both the kinetic and thermodynamic data reveal that the formation of complexes between [dye(+)···I(-)] and I(-) is the rate limiting step for the overall dye regeneration process. The regeneration of the neutral dye proceeds with the liberation of I; processes involving atomic iodine or I(-) are inferior, both from thermodynamic and kinetic considerations. The overall dye regeneration reaction is an exothermic process.  相似文献   
3.
The main aim of this paper is to derive a solution to the capacity problem faced by many perinatal networks in the United Kingdom. We propose a queueing model to determine the number of cots at all care units for any desired overflow and rejection probability in a neonatal unit. The model formulation is developed, being motivated by overflow models in telecommunication systems. Exact expressions for the overflow and rejection probabilities are derived. The model is then applied to a neonatal unit of a perinatal network in the UK.  相似文献   
4.
5.
Using a parameterized density-functional tight-binding method we have calculated the electronic and structural properties of Ge–Si nanoparticles. Starting with a spherical part of a zinc-blende/diamond crystal (with the center of the sphere at the mid-point of a nearest-neighbour bond) we have constructed initial structures that subsequently were allowed to relax. Structures consisting solely of Ge atoms or solely of Si atoms were studied, together with core-shell structures for which one semiconductor forms a shell on the core of the other semiconductor. Moreover, homogeneous, ordered SiGe structures as well as structures with a semisphere of one semiconductor and a semisphere of the other were also considered. In analysing the results special emphasis is put on identifying particularly stable structures, on explaining the occurrence of those, on the spatial distribution of the frontier orbitals, and on the variation of the total energy with structure and composition.  相似文献   
6.
Density functional theory (DFT) calculations have been carried out on the possible degradation/demethylation mechanism of methyl mercury (CH(3)Hg(+)) complexes with free cysteine and seleonocysteine. The binding of CH(3)Hg(+) ions with one (seleno)amino acid is thermodynamically favorable. However, the binding with another acid molecule is a highly unfavorable process. The CH(3)Hg-(seleno)cysteinate then degrades to bis(methylmercuric)sulphide (selenide for the Se-containing complex) which in turn forms dimethyl mercury and HgS/HgSe, the latter being precipitated out as nanoparticles. The dimethyl mercury interacts with water molecules and regenerates the CH(3)HgOH precursor. The calculated free energies of formation confirm the thermodynamic feasibility of every intermediate step of the degradation cycle and fully support earlier experimental results. In completing the cycle, one unit of mercury precipitates out from two units of sources, and thereby Se antagonizes the Hg toxicity. The degradation of CH(3)Hg-L-cysteinate is thermodynamically more favorable than the formation of CH(3)Hg-L-cysteinate. The preferred degradation of the CH(3)Hg-L-cysteinate suggests that another mechanism for CH(3)Hg to cross the blood-brain barrier should exist.  相似文献   
7.

Abstract  

First principle density-functional theory calculations have been carried out on the interaction of I and I3 with TiO2 anatase surfaces, modeled by finite clusters that range in size from 48 to 180 atoms. The total energy per TiO2 unit and the HOMO-LUMO gaps decrease with increasing the size of the clusters. Both redox species (I and I3 ) are strongly adsorbed on the TiO2 surface with the adsorbtion of I being stronger. Adsorption of triiodide leads to its dissociation. The positions of the HOMO and LUMO of the adsorbed systems shift negatively from their respective cluster values. Solvation effects have been modeled using the CPCM model. Introducing solvent reduces the shifting of HOMO and LUMO. Implications for dye-sensitized solar cells (DSSC) are discussed. Both the HOMO-LUMO shifting and the strong adsorption might affect the performance of the cell.  相似文献   
8.
It has been proposed that iodine binding to dyes may actually decrease the cell efficiency of a dye‐sensitized solar cell. A previous experimental study showed that a two‐atom change from oxygen to sulfur increased recombination of iodine with injected electrons by a factor of approximately 2. Here, it is shown that iodine binding is a plausible explanation for this effect. The steric and conjugation effects are quantified separately using a set of model compounds. Quantum‐chemical calculations show that elongation of the hydrocarbon chain has only an insignificant effect on the iodine and bromine binding to the chalcogen atoms (O, S, Se). The conjugation, however, significantly disfavors the iodine and bromine interaction. Iodine and bromine binding to the dye and model compounds containing sulfur is significantly more favorable than to their oxygen containing counterparts. Bromine binding to dyes is shown to be stronger than that of iodine. Accordingly, bromine binding to dyes may contribute significantly to the observed lower efficiencies in cells using Br/Br? as the redox couple. © 2012 Wiley Periodicals, Inc.  相似文献   
9.
Recent literature shows that the arrival and discharge processes in hospital intensive care units do not satisfy the Markovian property, that is, interarrival times and length of stay tend to have a long tail. In this paper we develop a generalised loss network framework for capacity planning of a perinatal network in the UK. Decomposing the network by hospitals, each unit is analysed with a GI/G/c/0 overflow loss network model. A two-moment approximation is performed to obtain the steady state solution of the GI/G/c/0 loss systems, and expressions for rejection probability and overflow probability have been derived. Using the model framework, the number of required cots can be estimated based on the rejection probability at each level of care of the neonatal units in a network. The generalisation ensures that the model can be applied to any perinatal network for renewal arrival and discharge processes.  相似文献   
10.
One of the major and unique components of dye-sensitized solar cells (DSSC) is the iodide/triiodide redox couple. Periodic density-functional calculations have been carried out to study the interactions among three different components of the DSSC, i.e. the redox shuttle, the TiO(2) semiconductor surface, and nitrogen containing additives, with a focus on the implications for the performance of the DSSC. Iodide and bromide with alkali metal cations as counter ions are strongly adsorbed on the TiO(2) surface. Small additive molecules also strongly interact with TiO(2). Both interactions induce a negative shift of the Fermi energy of TiO(2). The negative shift of the Fermi energy is related to the performance of the cell by increasing the open voltage of the cell and retarding the injection dynamics (decreasing the short circuit current). Additive molecules, however, have relatively weaker interaction with iodide and triiodide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号