首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   5篇
化学   46篇
力学   7篇
数学   3篇
物理学   18篇
无线电   17篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   4篇
  2018年   6篇
  2017年   4篇
  2016年   4篇
  2015年   1篇
  2013年   3篇
  2012年   7篇
  2011年   7篇
  2010年   5篇
  2009年   3篇
  2008年   5篇
  2007年   7篇
  2006年   2篇
  2005年   8篇
  2004年   4篇
  2003年   1篇
  2002年   3篇
  2001年   5篇
  2000年   2篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1990年   1篇
排序方式: 共有91条查询结果,搜索用时 93 毫秒
1.
2.
HgTe/Hg0.05Cd0.95Te superlattices (SLs) were grown on (112)B oriented Cd0.96Zn0.04 Te substrates using molecular beam epitaxy (MBE). The SLs, consisting of 100 periods of 80-Å-thick HgTe wells alternating with 77-Å-thick Hg0.05Cd0.95Te barriers, were designed to operate as detectors in the far-infrared (FIR) region. Infrared absorption spectroscopy, high-resolution transmission electron microscopy (TEM), Hall effect measurements, and x-ray diffraction were used to characterize the superlattice layers. A series of annealing experiments were initiated to quantify the temperature-dependent interdiffusion of the HgTe wells and Hg0.05Cd0.95Te barriers and consequently their degradation, which shifts the absorption edges of the SLs to higher energies, since a high-temperature ex situ anneal is normally required in order to produce the p-type material required for a photovoltaic detector. Results from infrared absorption spectroscopy, TEM, and Hall effect measurements for the annealed samples are presented. A FIR SLs single-element photoconductive (PC) device was designed and fabricated. Both material characterization and device testing have established the applicability of the HgTe/Hg0.05Cd0.95Te SLs for the FIR region.  相似文献   
3.
A high yielding aqueous phase exfoliation of graphite to high quality graphene using edible proteins and kitchen chemistry is reported here. Bovine serum albumin (BSA), β‐lactoglobulin, ovalbumin, lysozyme, and hemoglobin are used to exfoliate graphite and the exfoliation efficiency depended on the sign and magnitude of the protein charge. BSA showed maximum exfoliation rate, facilitated graphite exfoliation in water, at room temperature, by turbulence/shear force generated in a kitchen blender at exfoliation efficiencies exceeding 4 mg mL?1 h?1. Raman spectroscopy and transmission electron microscopy indicated 3–5 layer, defect‐free graphene of 0.5 μm size. Graphene dispersions loaded on a cellulose paper (650 μg cm?2) showed the film conductivity of 32 000 S m?1, which is much higher than graphene/polymer composites. Our method yielded ≈7 mg mL?1, BSA‐coated graphene with controllable surface charge, which is stable under wide ranges of pH (3.0–11) and temperature (5.0–50 °C), and in fetal bovine serum, for more than two months.These findings may lead to the large scale production of graphene for biological applications.  相似文献   
4.
Ln(SePh)(3) (Ln = Ce, Pr, Nd) reacts with elemental Se in the presence of Na ions to give (py)(16)Ln(17)NaSe(18)(SePh)(16), a spherical cluster with a 1 nm diameter. All three rare-earth metals form isostructural products. The molecular structure contains a central Ln ion surrounded by eight five-coordinate Se(2-) that are then surrounded by a group of 16 Ln that define the cluster surface, with additional μ(3) and μ(5) Se(2-), μ(3) and μ(4) SePh(-), and pyridine donors saturating the vacant coordination sites of the surface Ln, and a Na ion coordinating to selenolates, a selenido, and pyridine ligands. NIR emission studies of the Nd compound reveal that this material has a 35% quantum efficiency, with four transitions from the excited state (4)F(3/2) ion to (4)I(9/2), (4)I(11/2), (4)I(13/2), and (4)I(15/2) states clearly evident. The presence of Na(+) is key to the formation of these larger clusters, where reactions using identical concentrations of Nd(SePh)(3) and Se with either Li or K led only to the isolation of (py)(8)Nd(8)Se(6)(SePh)(12).  相似文献   
5.
The paper deals with the design of resilient networks that are fault tolerant against link failures. Usually, fault tolerance is achieved by providing backup paths, which are used in case of an edge failure on a primary path. We consider this task as a multiobjective optimization problem: to provide resilience in networks while minimizing the cost subject to capacity constraint. We propose a stochastic approach, which can generate multiple Pareto solutions in a single run. The feasibility of the proposed method is illustrated by considering several network design problems using a single weighted average of objectives and a direct multiobjective optimization approach using the Pareto dominance concept.  相似文献   
6.
A model calculation is presented for the spin wave scattering and coherent transport at the ferrimagnetically ordered cobalt-gadolinium alloy nanojunction between cobalt leads. The structural model for the amorphous alloy nanojunction [Co1/2Gd1/2]3 is considered as an ordered alloy hcp structure of three (0001) atomic planes between the leads. To analyze the spin dynamics and spin wave scattering at the nanojunction boundary, the phase field matching method (PFMT) is implemented over the ground state of the system, in the Heisenberg Hamiltonian representation. The coherent reflection and transmission probabilities of spin waves from the cobalt leads incident onto the nanojunction boundary are calculated, and numerical results are presented for the coherent SW transport across the nanojunction over the entire range of their frequencies. The results are especially valid in the interval between nanometric SW wavelengths greater than the nanojunction width and macroscopic wavelengths. They demonstrate in particular, the possibility of the resonance assisted maxima for the SW transmission spectra owing to the interactions between the incident spin waves and the localized spin resonances on the nanojunction. This effect is general and may be observed at different characteristic frequencies and corresponding incident angles.  相似文献   
7.
Premchand  V. P.  Balaram  Bipin  Mani  Ajith K.  Narayanan  M. D.  Sajith  A. S. 《Nonlinear dynamics》2022,110(1):573-588
Nonlinear Dynamics - Optimisation procedures for nonlinear vibrating systems are made cumbersome due to the fact that the regimes of periodic response are not known beforehand. Moreover, such...  相似文献   
8.
Nonlinear Dynamics - This work presents a novel method for the analytical and numerical solution of an n-term fractional nonlinear dynamical system. Two simple methods, commonly known to vibration...  相似文献   
9.
ABSTRACT

Modified coupled-cluster (CC) methods such as linearized coupled-cluster doubles (LinCCD), approximate coupled pair (ACP D14), 2CC (from nCC family), parameterized CCSD (pCCSD) and distinguishable cluster (DCSD) can have their advantages over general CC methods. Though these methods include connected clusters of single and double excitations at most, distinguishable cluster, parameterized CC and approximate coupled pair methods, in particular, have been shown to produce quantitatively correct results in benchmark studies. To put these methods on a stronger foothold, it is essential to understand the rationale for their success: mimicking the effect of connected triple excitations. We exploit the relation between CC and many body perturbation theory (MBPT) in general, and between CCSD and MBPT(4)/MP4 in particular, to take a step towards bringing clarity to this persisting conundrum. Our aim here is to look for numerical signs of ‘addition by subtraction’ or ‘inclusion by deletion’ effect that is likely behind the success of these modified CCD or CCSD methods. We achieve this by revisiting well-studied examples of single and multiple bond dissociation and comparing the performance of these modified CCSD methods with higher-level CC methods. Though our results are qualitative in nature, we hope this would lead to more rigorous analysis in future studies.  相似文献   
10.
ABSTRACT

Stemming from our implementation of parallel coupled-cluster (CC) capabilities for electron spin resonance properties [J. Chem. Phys. 139, 174103 (2013)], we present a new massively parallel linear response CC module within ACES III. Unlike alternative parallel CC modules, this general purpose module evaluates any type of first- and second-order CC properties of both closed- and open-shell molecules employing restricted, unrestricted and restricted-open-shell Hartree–Fock (HF) references. We demonstrate the accuracy and usefulness of this module through the calculation of static polarisabilities of large molecules. Closed-shell calculations are performed at the following levels: second-order many-body perturbation theory [MBPT(2)], CC with single- and double-excitations (CCSD), coupled-perturbed HF and density functional theory (DFT), and open-shell calculations at the unrestricted CCSD (UCSSD) one. Applications involve eight closed-shell organic-chemistry molecules (Set I), the first four members of the closed-shell thiophene oligomer series (Set II), and five open-shell radicals (Set III). In Set I, all calculated average polarisabilities agree reasonably well with experimental data. In Set II, all calculated average polarisabilities vs. the number of monomers show comparable values and saturation patterns and demonstrate that experimental polarisabilities may be inaccurate. In Set III, UCCSD perpendicular polarisabilities show a reasonable agreement with previous UCCSD(T) and restricted-open-shell-MBPT(2) values.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号