首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
晶体学   1篇
无线电   5篇
  2012年   1篇
  2006年   1篇
  2000年   1篇
  1996年   2篇
  1988年   1篇
排序方式: 共有6条查询结果,搜索用时 625 毫秒
1
1.
We report on DC and microwave characteristics for high electron-mobility transistors (HEMT's) grown on Si substrates by metal-organic chemical vapor deposition (MOCVD). Threshold voltage (V th) distribution in a 3-in wafer shows standard deviation of Vth (σVth) of 36 mV with Vth of -2.41 V for depletion mode HEMT's/Si and σVth of 31 mV with Vth of 0.01 V for enhancement mode, respectively. The evaluation of Vth in a 1.95×1.9 mm2 area shows high uniformity for as-grown HEMT's/Si with σVth of 9 mV for Vth of -0.10 V, which is comparable to that for HEMT's/GaAs. Comparing the Vth distribution pattern in the area with that for annealed HEMT's/Si, it is indicated that the high uniformity of Vth is obtained irrelevant of a number of the dislocations existing in the GaAs/Si. From microwave characteristic evaluation for HEMT's with a middle-(10~50 Ω·cm) and a high-(2000~6000 Ω·cm) resistivity Si substrate using a new equivalent circuit model, it is demonstrated that HEMT's/Si have the disadvantage for parasitic capacitances and resistances originated not from the substrate resistivity but from a conductive layer at the Si-GaAs interface. The parasitic parameters, especially the capacitances, can be overcome by the reduction of electrode areas for bonding pads and by the insertion of a dielectric layer under the electrode, which bring high cut-off frequency (fT) and maximum frequency of operation (fmax) of 24 GHz for a gate length of 0.8 (μm). These results indicate that HEMT's/Si are sufficiently applicable for IC's and discrete devices and have a potential to be substituted for HEMT's/GaAs  相似文献   
2.
Dislocation processes during physical vapor transport (PVT) growth of silicon carbide (SiC) single crystals were investigated by defect selective etching. It was found that foreign polytype inclusions introduced a high density of dislocations at the polytype boundary. In the polytype-transformed areas of the crystal, very few medium size hexagonal etch pits due to threading screw dislocations were observed, indicating that the polytype transformation ceased the propagation of threading screw dislocations. The oval-shaped etch pit arrays observed on the etched vicinal (0 0 0 1)Si surface, indicative of the dislocation multiplication in the basal plane, showed characteristic distribution around micropipes. Based on the results, we have argued the dislocation behavior in PVT grown SiC crystals, suggesting that dislocation interaction and conversion are relevant processes to understanding the behavior.  相似文献   
3.
The morphological and electrical properties of surface growth pits caused by dislocations in 4H-SiC epitaxial layers were characterized using tunneling atomic force microscopy. The characteristic distribution of the tip current between the metal-coated atomic force microscopy tip and the SiC was observed within a large surface growth pit caused by a threading screw dislocation. The current was highly localized inside the pit and occurred only on the inclined surface in the up-step direction near the pit bottom. This paper discusses the causes and possible mechanisms of the observed tip current distribution inside surface growth pits.  相似文献   
4.
A new small-signal linear equivalent circuit for high electron mobility transistors (HEMTs) fabricated on GaAs-on-Si wafers, HEMTs-on-Si, has been proposed. The new equivalent circuit describes the microwave characteristics of HEMTs-on-Si much better than the conventional metal-semiconductor field-effect transistor (MESFET) equivalent circuit does. Influences of the pads, the GaAs-Si interface, and the Si substrate on the microwave characteristics are included in the circuit. It also has a great advantage in that it can separately analyze the intrinsic device characteristics and influences of Si substrate and GaAs-Si interface. Analyzes using the new equivalent circuit show that the crucial problem of HEMTs-on-Si is the larger values of the pad capacitances and the drain-source capacitances than those of HEMTs fabricated on GaAs bulk wafers, HEMTs-on-GaAs, and that the substrate resistivity is not an important factor for microwave performances of HEMTs-on-Si. The microwave performance was improved by the reduction of the pad capacitances  相似文献   
5.
A T-shaped quarter-micron gate structure composed of WSix /Ti/Pt/Au has been developed for low-noise AlGaAs/GaAs HEMTs. The gate resistance Rg was reduced to 0.3 Ω for devices with 200 μm-wide gates despite using WSix, and the source resistance Rs reached 0.28 Ω mm by minimising the source-gate distance using a self-alignment technique. This HEMT exhibited the lowest reported noise figure of 0.54 dB with an associated gain of 12.1 dB at 12 GHz  相似文献   
6.
Surface topography of the {0 0 0 1} facet plane of as-grown 6H- and 4H-SiC crystals was studied ex situ by Nomarski optical microscopy (NOM) and atomic force microscopy (AFM). The surface polarity and the polytype of grown crystals largely affect the growth surface morphology of SiC{0 0 0 1} via differences in several thermodynamic and kinetic parameters. NOM observations revealed giant steps of a few micrometers in height on the {0 0 0 1} growth facet, and it was found that a morphological transition of the growth facet occurred when the growth conditions were changed. AFM imaging of the stepped structure of SiC{0 0 0 1} detected steps of height equal to the unit c-lattice parameter (c=1.512 nm for 6H-SiC and 1.005 nm for 4H-SiC). They are fairly straight and very regularly arranged, giving rise to equidistant step trains. Upon nitrogen doping, these regular step trains on the 6H-SiC(0 0 0  )C and 4H-SiC(0 0 0  )C surfaces became unstable: the equidistant step trains were transformed into meandering macrosteps of height greater than 10 nm. In this paper, we discuss the mechanism of macrostep formation (step bunching) on the SiC{0 0 0 1} surfaces through the consideration of the interplay between step energetics (repulsive step interaction) and kinetics (asymmetric step kinetics) on the growing crystal surface and elucidate how they affect the growth surface morphology of the SiC{0 0 0 1} facet.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号