首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   31篇
  免费   4篇
化学   27篇
数学   6篇
物理学   1篇
无线电   1篇
  2023年   1篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   1篇
  2018年   2篇
  2016年   3篇
  2013年   1篇
  2012年   4篇
  2011年   5篇
  2008年   4篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
  2004年   1篇
  1989年   2篇
  1986年   1篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
2.
Journal of Optimization Theory and Applications - Necessary optimality conditions for a bilevel optimization problem are given in the paper by Kohli (J Optim Theory Appl 152: 632–651, 2012)....  相似文献   
3.
Photoinduced isomerization of a novel photochromic cation, [2PA-Mmim](+) (2-phenylazo-1,3-dimethylimidazolium cation), was studied by optical spectroscopic methods. The UV-Vis absorption spectra of the [2PA-Mmim](+) cation show two prominent bands starting around 410 and 520 nm, corresponding to the S(0)-S(2) (π, π*) and S(0)-S(1) (n, π*) transitions, respectively. The photoisomerization mechanism is studied by femtosecond time-resolved transient absorption experiments performed after S(0)-S(2) (π, π*) excitation in several solvents with different viscosity, including ionic liquids. The transient absorption signals at two representative wavelengths were fitted by bi-exponential functions, which yield four decay components. The photoisomerization mechanism is discussed in light of the relaxation schemes available for azobenzene. Only one of the components depends on the solvent viscosity and it changes from 1.2 ps (dichloromethane, 0.4 cP) to 5.6 ps ([Bmim][BF(4)], 93 cP). This component is assigned to a molecule at the S(1) state, which is responsible for the "rotational" isomerization. The weak dependence on the solvent viscosity of this component is explained in terms of local change in the viscosity as a result of local heating due to excess energy released at S(2)-S(1) internal conversion. The other three components of ~0.4, 1.0 and 10 ps are attributed to relaxation processes of the molecule at S(2), S(1) and S(0) states, respectively. The quantum yields for the forward E-Z photoisomerization are ~0.15 after S(2) excitation. The backward Z-E isomerization is slow with a lifetime of 1 hour and an activation energy of 91 kJ mol(-1) through an "inversion" mechanism.  相似文献   
4.
The library of isostructural porous frameworks enables a systematic survey to optimize the structure and functionality of porous materials. In contrary to metal–organic frameworks (MOFs) and covalent organic frameworks (COFs), a handful of isostructural frameworks have been reported for hydrogen-bonded organic frameworks (HOFs) due to the weakness of the bonds. Herein, we provide a rule-of-thumb to develop isostructural HOFs, where we demonstrate the construction of the third and fourth generation of isostructural HAT-based HOFs (TolHAT-1 and ThiaHAT-1) by considering three important structural factors, that are (1) directional H-bonding, (2) shape-fitted docking of the HAT core, and (3) modulation of peripheral moieties. Their structural and photo-physical properties including HCl vapor detection are presented. Moreover, TolHAT-1, ThiaHAT-1, and other isostructural HOFs (CPHAT-1 and CBPHAT-1) were thoroughly compared from the viewpoints of structures and properties. Importantly, molecular dynamics (MD) simulation proves to be rationally capable of evaluating the stability of isostructural HOFs. These results can accelerate the development of various isostructural molecular porous materials.

The library of isostructural porous frameworks enables a systematic survey to optimize the structure and functionality of porous materials.  相似文献   
5.
6.
We report studies of the interaction between a proton-transfer dye (1'-hydroxy,2'-acetonaphthone, HAN), with the human serum albumin (HSA) protein and a beta-cyclodextrin derivative (DM-beta-CD) in neutral water solutions. We used steady-state and picosecond time-resolved emission spectroscopy to follow the structural changes of HAN due to the hydrophobicity and confinement effect of these nanocavities. Upon encapsulation, the fluorescence intensity of the 1:1 inclusion complex in both cavities increases, and the emission lifetimes become longer. For the DM-beta-CD complexes, we obtained 430 and 920 ps, whereas for the HSA complexes we obtained 630 ps and 2 ns. Picosecond anisotropy measurements show strong confinement due to protein docking. The rotational time for the CD complex is 660 ps, whereas for the protein complex we find 6 ns. The process of energy transfer from the excited triptophan 214 (Trp214) of HSA to the trapped HAN occurs with high efficiency (71%), and the calculated distance between both chromophores is 17 A. We believe that the results are important for a better understanding of the processes occurring in inclusion complexes such as those in nanopharmacodynamics.  相似文献   
7.
In this contribution, we report on studies of rotational and diffusional dynamics of 7-hydroxyquinoline (7HQ) within a reverse micelle (RM) containing different amounts of water. Analyzed in terms of the wobbling-in-a-cone model, the data reveal structural and dynamical properties of the nanopool. We clearly observed three regions in the behavior of confined water molecules within the RM hosting a double proton-transfer reaction between the probe and water. This observation remarkably reproduces the change of calculated water density within this life-mimicking medium. The number of water molecules per AOT head in the transition regions changes from 2 to 5, the latter being very near to the full solvation number (6) of the RM heads. Moreover, the H-bonds breaking and making within the RM to give new structures of the probe strongly affect the environment fluidization in different extents, reflected in different relaxation times of these structures; however, they are of similar sizes. We discuss the role of RM confinement and the proton-transfer dynamics on the behavior of water and their relationships to the packing of water molecules in the studied range of concentrations.  相似文献   
8.
Enhancing thermal and chemical durability and increasing surface area are two main directions for the construction and improvement of the performance of porous hydrogen‐bonded organic frameworks (HOFs). Herein, a hexaazatriphenylene (HAT) derivative that possesses six carboxyaryl groups serves as a suitable building block for the systematic construction of thermally and chemically durable HOFs with high surface area through shape‐fitted docking between the HAT cores and interpenetrated three‐dimensional network. A HAT derivative with carboxybiphenyl groups forms a stable single‐crystalline porous HOF that displays protic solvent durability, even in concentrated HCl, heat resistance up to 305 °C, and a high Brunauer–Emmett–Teller surface area [SA(BET)] of 1288 m2 g?1. A single crystal of this HOF displays anisotropic fluorescence, which suggests that it would be applicable to polarized emitters based on robust functional porous materials.  相似文献   
9.
The spectroscopy and dynamics of a series of Zr‐based MOFs in dichloromethane suspension are reported. These Zr‐NADC MOFs were constructed by using different mixtures of 2,6‐naphthalenedicarboxylate (NDC) and 4‐amino‐2,6‐naphthalenedicarboxylate (NADC) as organic linkers. The fraction of NADC relative to NDC in these heterolinker MOFs ranges from 2 to 35 %. The results indicate two competitive photoprocesses: NDC excimer formation and an energy transfer (ET) from excited NDC linkers to NADC linkers. Increasing the fraction of NADC linkers in the Zr‐NADC nanostructure decreases the mean time constant of NDC excimer formation, while the NADC emission intensity experiences a drop at the highest fraction of this linker in the MOF. The first observation is explained by an increase in the energy‐transfer probability between the two linkers, and the second by emission quenching in the NADC linkers due to ultrafast charge transfer assisted by the amino group. Femtosecond time‐resolved emission studies showed that the ET process (recorded as decaying and rising components) from excited NDC to NADC takes place in 1.2 ps. Direct excitation of the NADC linkers (at 410 nm) shows a decaying, but not rising, component of 250–480 fs, which could reflect the formation of a nonemissive charge‐separation state. The results show that by using MOFs having heterolinkers it is possible to trigger and tune excimer formation and ET processes.  相似文献   
10.
Single molecule studies of the free DY-630-MI and interacting with MCM-41 and (Al)MCM-41, show the conformational diversity of the molecule. The free dye is characterized by a single broad (fwhm = 0.7 ns) lifetime distribution histogram centered on 1.47 ns, which is also reflected in the broadness of the polarization value distribution histogram, covering almost the full range of values from -1 to 1. The fluorescence intensity traces of the free DY-630-MI show strong blinking behavior and weak photostability. Upon interaction with the mesoporous silica nanomaterials, MCM-41 and (Al)MCM-41, the dye molecule becomes more stable, with less blinking present in the fluorescence traces. The lifetime distribution histogram in the case of DY-630-MI/MCM-41 complexes is fitted by 3 Gaussians, indicating 3 distinct interaction sites. The Gaussian with the largest amplitude is centered on 2.19 ns, consistent with the confinement effect of MCM-41 and in agreement with the ensemble average studies. The polarization value distribution histogram becomes narrower in comparison with the free molecule and is more biased towards the positive limit. Replacing few Si(4+) ions with Al(3+) ones in the regular MCM-41 changes the local electrostatic field within the nanotube. This atomic substitution in the nanohosts results in a more selective orientation of the dye molecules, giving two populations with time constants 1.56 and 2.10 ns.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号