首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
化学   3篇
无线电   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2019年   1篇
  2009年   1篇
排序方式: 共有5条查询结果,搜索用时 6 毫秒
1
1.
Electrochemical and interfacial characteristics of Li-ion battery system based on LiFePO4 cathode and graphite anode with ionic liquid (IL) electrolytes have been investigated, both with and without addition of a small amount of polymer to the electrolyte. The IL electrolyte consisted of bis(fluorosulfonyl)imide (FSI) as anion and 1-ethyl-3-methyleimidazolium (EMI) or N-methyl-N-propylpyrrolidinium (Py13) as cation, and operated at ambient temperature. We reported previously that the SEI formation with IL was stabilized in the graphite anode at 80% coulombic efficiency (CE) in the first cycle, when FSI anion is used. In this work, we extend the study to the LiFePO4 cathode material. Gel polymer with IL is one part of this study. The stepwise impedance spectroscopy was used to characterize the Li/IL-Gel polymer/LiFePO4 at different states of charge. This technique revealed that the interface resistance was stabilized when the cathode is at 70% DoD (Depth of Discharge). The diffusion resistance is higher at the two extremes of discharge when monophase LiFePO4 state (0%DoD and 100%DoD) obtains. When polymer is added to the IL, interface resistance is improved with 1 wt.% but results with IL alone are not improved for the case of 5 wt.% polymer added. Good cycling life stability was obtained with Li/IL-FSI/LiFePO4 cells, with or without polymer. The first evaluation of the Li-ion cell, LiFePO4/IL-FSI-(5 wt.%) gel polymer/graphite, has shown low first CE at 68.4% but it recovers in the third cycle, to 96.5%. Some capacity fade was noticed after 30 cycles. The rate capability of the Li-ion cell shows a stable capacity until 2 C discharge rate. Dedicated to Professor J.O’ M. Bockris, whose contributions to electrochemistry are inestimable and indelible, on his eighty-fifth birthday.  相似文献   
2.
A nanolayer of reactive propyl acrylate silane groups was deposited on a lithium surface by using a simple dipping method. The polymerization of cross-linkable silane groups with a layer of ally-ether-ramified polyethylene oxide was induced by UV light. SEM analysis revealed a good dispersion of silane groups grafted on the lithium surface and a layer of polymer of about 4 μm was obtained after casting and reticulation. The electrochemical performance for the unmodified and modified lithium electrodes were compared in symmetrical Li/LLZO/Li cells. Stable plating/stripping and low interfacial resistance were obtained when the modified lithium was utilized, indicating that the combination of silane and polymer deposition is promising to increase Li-metal/garnet contact.  相似文献   
3.
Solid-state lithium metal batteries (SSLMBs) are promising next-generation high-energy rechargeable batteries. However, the practical energy densities of the reported SSLMBs have been significantly overstated due to the use of thick solid-state electrolytes, thick lithium (Li) anodes, and thin cathodes. Here, a high-performance NASICON-based SSLMB using a thin (60 µm) Li1.5Al0.5Ge1.5(PO4)3 (LAGP) electrolyte, ultrathin (36 µm) Li metal, and high-loading (8 mg cm−2) LiFePO4 (LFP) cathode is reported. The thin and dense LAGP electrolyte prepared by hot-pressing exhibits a high Li ionic conductivity of 1 × 10−3 S cm−1 at 80 °C. The assembled SSLMB can thus deliver an increased areal capacity of ≈1 mAh cm−2 at C/5 with a high capacity retention of ≈96% after 50 cycles under 80 °C. Furthermore, it is revealed by synchrotron X-ray absorption spectroscopy and in situ high-energy X-ray diffraction that the side reactions between LAGP electrolyte and LFP cathode are significantly suppressed, while rational surface protection is required for Ni-rich layered cathodes. This study provides valuable insights and guidelines for the development of high-energy SSLMBs towards practical conditions.  相似文献   
4.
Cancer is one of the most serious health problems worldwide, affecting individuals from different sexes, ages, and races. However, the most frequent cancer types in the world are lung, prostate, stomach, colorectal, and esophagus in men; and breast, lung, stomach, colorectal and cervical in women. Currently, the search for new active substances used in oral targeted therapies are legitimate and opens up the possibility of an "ambulatory shift" in cancer treatment. In order to design anti-tumor drug candidates endowed with oral bioavailability, we studied trough an in silico approach the oral bioavailability of newly synthesized biomolecules; α-sulfamidophosphonates and α-amidophosphonates as well as their mechanism of action on the new target urokinase-type plasminogen activator (uPA). The studied compounds have been found to meet the five criteria of. Lipinski's rule. The Osiris, Molinspiration and SWISS/ADME calculations related to the compounds (1d, 2a) have shown that these compounds could be good candidates for interacting with the different targets, they have convincing characteristics in relation to the standard drug used. It can be concluded that these compounds are biologically important and possessing molecular properties desirable for being a drug candidate for oral use.The molecular docking results of the studied compounds revealed a good ligand-target interactions, the compounds (1d, 2a) presented a possibility of interacting as an inhibitor of the anticancer target: urokinase-type plasminogen activator (uPA).  相似文献   
5.
A solid-state battery with a lithium-metal anode and a garnet-type solid electrolyte has been widely regarded as one of the most promising solutions to boost the safety and energy density of current lithium-ion batteries. However, lithiophobic property of garnet-type solid electrolytes hinders the establishment of a good physical contact with lithium metal, bringing about a large lithium/garnet interfacial resistance that has remained as the greatest issue facing their practical application in solid-state batteries. Herein, a melt-quenching approach is developed by which varieties of interfacial modification layers based on metal alloys can be coated uniformly on the surface of the garnet. It is demonstrated that with an ultrathin, lithiophilic AgSn0.6Bi0.4Ox coating the interfacial resistance can be eliminated, and a dendrite-free lithium plating and stripping on the lithium/garnet interface can be achieved at a high current density of 20 mA cm−2. The results reveal that the uniform coating on the garnet surface and the facile lithium diffusion through the coating layer are two major reasons for the excellent electrochemical performances. The all-solid-state full cell consisting of the surface modified garnet-type solid electrolyte with a LiNi0.8Mn0.1Co0.1O2 cathode and a lithium–metal anode maintains 86% of its initial capacity after 1000 stable cycles at 1 C.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号