首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   9篇
物理学   9篇
无线电   4篇
  2023年   2篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   2篇
  2011年   1篇
  2010年   1篇
排序方式: 共有13条查询结果,搜索用时 31 毫秒
1.
抛物方程方法的亚网格模型及其应用研究   总被引:1,自引:0,他引:1  
该文在抛物方程非均匀网格技术的基础上,提出了抛物方程方法的亚网格模型,并给出了该亚网格模型的具体构建方法,以快速准确地求解大尺度复杂电磁环境中存在关键目标的电波传播问题。通过对存在强散射体的复杂电磁环境中电磁波的分布特性进行模拟,探讨了抛物方程亚网格技术的高效性。结果表明:与细网格相比,亚网格技术使得抛物方程的计算速度提升了4.57倍,网格空间数下降了86.64%,且较非均匀网格具有更高的计算精度。可见,抛物方程的亚网格模型能够极大地提升抛物方程的仿真效率。  相似文献   
2.
赵朋程  郭立新 《中国物理 B》2017,26(9):99201-099201
The air breakdown is easily caused by the high-power microwave, which can have two mutually orthogonal and heterophase electric field components. For this case, the electron momentum conservation equation is employed to deduce the electric field power and effective electric field for heating electrons. Then the formula of the electric field power is introduced into the global model to simulate the air breakdown. The breakdown prediction from the global model agrees well with the experimental data. Simulation results show that the electron temperature is sensitive to the phase difference between the two electron field components, while the latter can affect obviously the growth of the electron density at low electron temperature amplitudes. The ionization of nitrogen and oxygen induces the growth of electron density, and the density loss due to the dissociative attachment and dissociative recombination is obvious only at low electron temperatures.  相似文献   
3.
高功率微波极易引起大气击穿, 而伴随产生的等离子体将对微波传播特性产生很大的影响.基于电子流体模型, 研究了一个大气压下110 GHz高功率微波在大气击穿等离子体中的传输、反射和吸收特性.模拟结果表明, 大气击穿等离子体结构在空间呈丝状分布, 其与实验现象符合得很好; 由于大气击穿等离子体是时变的, 其对微波的反射和吸收也是时变的; 随着时间的推移, 等离子体吸收功率逐渐增加直至达到饱和水平, 且其远大于微波反射功率; 当减小入射电场时, 等离子体对微波的反射变得更低.将110 GHz微波击穿阈值的模拟结果与实验数据进行对比, 发现两者吻合得很好.  相似文献   
4.
赵朋程  郭立新  舒盼盼 《中国物理 B》2017,26(2):29201-029201
The energy transmission of the long microwave pulse for the frequency of 2.45 GHz and 5.8 GHz is studied by using the electron fluid model, where the rate coefficients are deduced from the Boltzmann equation solver named BOLSIG+. The breakdown thresholds for different air pressures and incident pulse parameters are predicted, which show good agreement with the experimental data. Below the breakdown threshold, the transmitted pulse energy is proportional to the square of the incident electric field amplitude. When the incident electric field amplitude higher than the breakdown threshold increases,the transmitted pulse energy decreases monotonously at a high air pressure, while at a low air pressure it first decreases and then increases. We also compare the pulse energy transmission for the frequency of 2.45 GHz with the case of 5.8 GHz.  相似文献   
5.
赵朋程  廖成  杨丹  钟选明  林文斌 《物理学报》2013,62(5):55101-055101
用流体模型研究高功率微波气体击穿时, 电子能量分布函数常被假设为麦克斯韦分布形式, 此假设可能将给模拟结果带来较大的误差. 通过求解玻尔兹曼方程, 得到非平衡状态下的电子能量分布函数. 分别将上述两类分布函数引入到流体模型中, 对氩气击穿进行了数值模拟. 结果表明, 基于非平衡分布函数得到的击穿时间与粒子模拟结果符合得很好, 而当平均电子能量较低时, 麦克斯韦分布函数的高能尾部导致了较短的击穿时间. 最后, 采用非平衡分布函数计算了不同压强下的氩气击穿阈值, 发现其与实验结果基本符合. 关键词: 微波气体击穿 电子能量分布函数 流体模型 玻尔兹曼方程  相似文献   
6.
随着110 GHz高功率太赫兹波功率容量的提升,其引起的大气击穿问题越来越受到重视。将若干等效电离参数表达式引入到电子雪崩密度方程中,计算了不同压强下的大气击穿阈值。结果表明,由Ali等效电离参数得到的110 GHz击穿阈值与实验数据符合得很好。在此基础上,利用Ali等效电离参数对逃逸传输能量密度与太赫兹波振幅的关系进行了分析。结果表明,当太赫兹波振幅小于击穿阈值时,逃逸传输能量密度随功率密度的增加线性增加;当太赫兹波振幅大于击穿阈值时,逃逸传输能量密度随功率密度先减小后增大。  相似文献   
7.
The electron energy distribution function (EEDF), predicted by the Boltzmann equation solver BOLSIG+ based on the two-term approximation, is introduced into the fluid model for simulating the high-power microwave (HPM) breakdown in argon, nitrogen, and air, and its validity is examined by comparing with the results of particle-in-cell Monte Carlo collision (PIC/MCC) simulations as well as the experimental data. Numerical results show that, the breakdown time of the fluid model with the Maxwellian EEDF matches that of the PIC/MCC simulations in nitrogen; however, in argon under high pressures, the results from the Maxwellian EEDF were poor. This is due to an overestimation of the energy tail of the Maxwellian EEDF in argon breakdown. The prediction of the fluid model with the BOLSIG+ EEDF, however, agrees very well with the PIC/MCC prediction in nitrogen and argon over a wide range of pressures. The accuracy of the fluid model with the BOLSIG+ EEDF is also verified by the experimental results of the air breakdown.  相似文献   
8.
联立麦克斯韦方程与电子流体方程,用时域有限差分法(FDTD)模拟高斯型和阻尼正弦型等宽频高功率微波(HPM)的大气传播.在每个时间网格上,根据窄带脉冲的电子速度,通过离散傅立叶变换(DFT)方法求解出宽频脉冲的等效电场,将等效电场和压强代入电离参数公式,使电离参数随空间网格不断更新,提高计算准确性.结果表明,宽频HPM脉冲幅值、脉宽以及海拔高度等参数对大气击穿有明显的影响;大气击穿导致尾蚀效应;随着传播距离的增加,宽频HPM脉冲的尾部衰减加剧,脉宽缩短,引起宽频脉冲的频谱出现展宽、分裂及中心频率移动等现象.  相似文献   
9.
高功率微波大气传播数值计算的加速方法   总被引:2,自引:0,他引:2       下载免费PDF全文
用时域有限差分法(FDTD)对高功率微波(HPM)大气传播进行数值仿真时,所要关心的仅是传播目标点HPM波形的分布,而传播过程中每一空间点不需要考虑,所以可将传播空间分段计算,在分段点处需要增加一个吸收边界,并将传播到该点的HPM保存下来,作为后继计算空间的源加入到其后一空间步,完成数据传递。通过这样循环处理可以达到节约计算时间和存储内存的目的,从而达到加速计算的目的。  相似文献   
10.
赵朋程  廖成  冯菊 《中国物理 B》2015,24(2):25101-025101
The fluid model is proposed to investigate the gas breakdown driven by a short-pulse(such as a Gaussian pulse) highpower microwave at high pressures.However,the fluid model requires specification of the electron energy distribution function(EEDF);the common assumption of a Maxwellian EEDF can result in the inaccurate breakdown prediction when the electrons are not in equilibrium.We confirm that the influence of the incident pulse shape on the EEDF is tiny at high pressures by using the particle-in-cell Monte Carlo collision(PIC-MCC) model.As a result,the EEDF for a rectangular microwave pulse directly derived from the Boltzmann equation solver Bolsig+ is introduced into the fluid model for predicting the breakdown threshold of the non-rectangular pulse over a wide range of pressures,and the obtained results are very well matched with those of the PIC-MCC simulations.The time evolution of a non-rectangular pulse breakdown in gas,obtained by the fluid model with the EEDF from Bolsig+,is presented and analyzed at different pressures.In addition,the effect of the incident pulse shape on the gas breakdown is discussed.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号