首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   2篇
物理学   5篇
无线电   4篇
  2023年   1篇
  2022年   3篇
  2021年   1篇
  2020年   1篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
朱强  周维虎  陈晓梅  李冠楠  石俊凯 《红外与激光工程》2022,51(12):20220156-1-20220156-10
纸币是国家发行并强制使用的货币符号,2019年中国人民银行发行的2019年版第五套人民币纸币,两面采用了抗脏污保护涂层,使纸币的整洁度明显改善。作为“国家名片”,在纸币生产过程中,对每一道工艺都有严格的质量控制,涂层是通过涂布机将涂布液转移、固化至纸币两面,由此称为涂布工艺。为了更加合理地控制涂布质量,生产中需要检测纸币涂层的厚度。针对该需求,文中建立了纸币图纹作为复杂衬底的涂层厚度光学漫反射模型,采用傅里叶近红外光谱仪和激光共聚焦显微系统对已涂布和未涂布的纸币进行识别并定量检测。文中首先根据涂层物质在近红外光谱可被有效识别的特点,对涂层的近红外吸收光谱数据提出了基于多元散射校正(MSC)与二阶导组合的分析方法,确定4 346.764 cm?1为特征波数。再根据反射率、粗糙度对涂层厚度的模型解耦,最后通过激光共聚焦显微系统检测了已涂布纸币的涂层变化,并将其与模型的厚度解耦结果关联,得出测量涂层厚度最小为3.807 μm,最大为12.738 μm。最终结果表明该检测方法对纸币生产中涂层质量控制具有重要的实践指导意义。  相似文献   
2.
无线传感网络的节点部署随机性很强,每个节点的利用率不同,经常用到的节点可能会能量耗尽死亡,传统的网络协议将传感网络随机分为不同的簇,簇头能量很微弱的节点可能仍被选为簇头,造成了节点死亡,其没有避绕死亡节点的机制,造成通讯稿效率不高.为此提出微粒群优化LEACH的无线传感网络通信优化方法,结合LEACH的优点,簇头选择时使用微粒群的高度智能优化的特点将簇头当前能量与原始能量作为选择因素构造目标函数.通过适应度值避让节点中的死亡节点.实验仿真结果证明,簇头微粒群优化后传感网络能量损耗大大降低,死亡节点通信数目也变小.提高了通讯效率.  相似文献   
3.
基于电致发光影像的太阳能电池瑕疵检测   总被引:1,自引:1,他引:0  
李冠楠  谭庆昌  张阔  张宇鹏 《发光学报》2013,34(10):1400-1407
太阳能电池制造的复杂性决定其在制造过程中会有很多瑕疵产生,瑕疵的存在会大大影响太阳能电池的发电效率和使用寿命。本文运用电致发光影像技术来凸显瑕疵,针对影像中的瑕疵人工检测率低且缺乏客观性的问题,选用了基于统计的瑕疵检测算法。检测时,选取扩展Haar特征作为样本像素点的特征值,应用改进的模糊C均值聚类法对正常样本进行分群训练,通过判断测试样本是否在正常样本群组之中的方法实现了样本的瑕疵检测,并近似地给出了瑕疵位置。实验结果表明,该方法对太阳能芯片电致发光影像中瑕疵的总辨识率可以达到96%。  相似文献   
4.
极紫外光刻掩模具有特殊的多层膜堆叠的反射式结构,在工艺制造过程中极易产生缺陷,引起多层膜结构变形,从而对掩模反射场产生干扰。这种掩模缺陷是制约极紫外光刻技术发展的难题之一。建立了含有缺陷的极紫外掩模多层膜结构模型,在此基础上采用时域有限差分(FDTD)法分析了缺陷尺寸和缺陷位置对掩模多层膜结构反射场分布的影响。结果表明,多层膜结构反射场受干扰程度是缺陷的高度和宽度综合作用的结果,并且与缺陷结构的平缓程度有关。反射场受干扰程度也与缺陷在多层膜结构内部的高度位置有关,引起多层膜结构靠近底层变形的缺陷对反射场的影响较小,而引起多层膜结构靠近顶层变形的缺陷对反射场有明显的干扰。  相似文献   
5.
微/纳米尺度亚表面缺陷会降低光学元件等透明样品的物理特性,严重影响光学及半导体领域加工制造技术的发展。为了快速、无损检测透明样品亚表面缺陷,本文针对光学元件亚表面内微米量级缺陷的检测需求,提出了一种基于过焦扫描光学显微镜(TSOM)的检测方法。利用可见光光源显微镜和精密位移台,沿光轴对亚表面缺陷进行扫描,得到亚表面缺陷的一系列光学图像。将采集到的图像按照空间位置进行堆叠,生成TSOM图像。通过获得所测特征的最大灰度值来获得亚表面缺陷的定位信息。提出方法对2000μm深亚表面缺陷的定位相对标准差达到0.12%。该研究为透明样品亚表面缺陷检测及其深度定位提供了一种新方法。  相似文献   
6.
7.
测量技术正不断向着精密化、智能化、集成化的方向发展,具有代表性的光谱共焦测量技术是在激光共焦显微技术的基础上发展而来,利用色散原理和光谱仪解码分析实现高精度测量。光谱共焦测量技术可进行位移测量、三维重建、表面粗糙度检测和厚度检测,具有无接触、高效率、在线测量等优点,在精密测量中发挥着重要作用,被广泛应用于微电子、工程材料、生物医学和航空航天等领域。近年来,光谱共焦系统在光学系统结构、光学镜头设计、光源优化和数据处理算法等各个方面取得了重大进展。文章对光谱共焦测量技术进行综述,论述了光谱共焦测量技术相较于其他测量方法的优势,综述了光谱共焦技术的测量原理、发展历程与应用进展,并对光谱共焦测量技术的发展趋势进行了展望。  相似文献   
8.
We report on a novel architecture to suppress the multi-pulse formation in an all-polarization-maintaining figure-9 erbium-doped fiber laser under high pump power. A 2×2 fiber coupler is introduced into the phase-biased nonlinear amplifying loop mirror to extract part of intracavity laser power as a laser output, and the dependence of output couple ratio of fiber coupler on the mode-locking state is experimentally investigated. The intracavity nonlinear effect is mitigated by lowering the intracavity laser power, which is conducive to avoiding the multi-pulse formation. In the meantime, the loss-imbalance induced by fiber coupler is helpful in improving the self-starting ability. With the proposed laser structure,the multiple pulse formation can be suppressed and high power single pulse train can be obtained. The laser emits three pulse trains which is convenient for some applications. Finally, the output power values of three ports are 5.3 m W, 51.3 m W,and 13.2 m W, respectively. The total single pulse output power is 69.8 m W, which is more than 10 times the result without OC2. The total slope efficiency is about 10.1%. The repetition rate of three pulse trains is 21.17 MHz, and the pulse widths are 2.8 ps, 2.63 ps, and 6.66 ps, respectively.  相似文献   
9.
微电子机械系统(Micro-Electro-Mechanical System,MEMS)具有小型化、高集成度的特点,随着MEMS结构深宽比的不断增大,对MEMS结构尺寸的测量提出更高的要求。过焦扫描光学显微技术(Through-focus Scanning Optical Microscopy,TSOM)是一种高精度无损的光学测量方法,通过采集一组离焦图并沿扫描方向截取TSOM图像,利用库匹配的方法从中提取待测结构的尺寸信息。该方法对于纳米级结构测量有着极高的灵敏度,然而对于微米级特征尺寸存在建库困难且易受环境干扰的问题。本文针对微米级MEMS沟槽结构,在传统的光学显微镜基础上进行改造,建立了TSOM光学系统采集离焦图像,利用图像特征提取方法生成TSOM特征向量集,结合机器学习的方法建立不同槽宽尺寸的回归预测模型,对微米级MEMS槽宽尺寸实现纳米级测量精度,单点重复性测量2μm槽宽的相对标准差(Relative Standard Deviation,RSD)在1%左右,10μm和30μm槽宽RSD分别低于0.2%和0.35%,结果表明该方法对于微米级MEMS沟槽测量具有极高的应用前景...  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号