首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   1篇
物理学   5篇
无线电   1篇
  2020年   1篇
  2018年   1篇
  2014年   1篇
  2005年   3篇
排序方式: 共有6条查询结果,搜索用时 31 毫秒
1
1.
差分图像运动监测仪广泛应用于视宁度的实时测量.利用随机相位屏和光学离焦像差模拟差分图像运动,分析了差分图像运动监测仪的测量准确度,结果表明差分图像运动监测仪能够可靠地测量地面处湍流.在国家天文台兴隆观测站,开展了两台相同硬件配置的差分图像运动监测仪的对比实验,分析曝光时间的影响和测量结果的相关性.结果表明:有限曝光时间降低差分图像运动,使视宁度值测量值偏小;视宁度测量结果的时间变化趋势和统计结果一致性较好.  相似文献   
2.
乐中宇  崔向群  顾伯忠 《红外与激光工程》2020,49(9):20190517-1-20190517-9
我国南极天文台规划有一台主镜口径2.5 m的光学红外望远镜。这台望远镜在国内制造,以大型装配体的形式运输到南极天文台,从南极边沿的中山站到南极内陆的昆仑站需要用雪橇车运输。雪橇车在一些路段振动剧烈。文中以这台望远镜主镜运输的抗振缓冲系统为研究目标,首先研究了隔振系统理论模型,用四端参数法分析了双层隔振系统的传输特性,然后研究了南极内陆科考队在雪橇运输中测得的振动数据,分析了考虑底支承力不均匀时主镜运输的许用动力学条件,提出了一种包含杠杆式缓冲结构和聚乙烯泡沫塑料结构的双层隔振系统,最后对这种隔振系统的性能进行了有限元分析与多体动力学研究。结果表明:所提出的抗振缓冲系统在南极实测得到的最极端冲击信号的作用下可以满足主镜模块最大加速度不大于5 g的要求,此时主镜模块的 Z 向运动范围约1.2 m,该缓冲系统具有实用价值,可以在南极2.5 m望远镜主镜的整体运输中使用。所提出的方法对其他脆弱结构的缓冲系统设计有参考价值。  相似文献   
3.
大口径天文薄镜面磨制试验   总被引:3,自引:0,他引:3  
介绍了采用薄镜面主动支撑技术来加工大口径天文薄镜面的试验情况。试验镜为一弯月型球面反射镜.直径为Ф1035mm,镜面曲率半径为3220mm,径厚比约为40:1。在磨制过程中,有55个分离支撑点支撑存镜子背面。支撑点的位置与支撑力的大小通过有限元分析计算确定,其中3个为固定支撑点.另外52个为主动支撑点。每个支撑点位置设置了力促动器,调节力促动器加力的大小。可以主动改正镜面的低频误差。加工后最后达到的面形精度:λ=632.8nm,面形误差(RMS)小于等于λ/21.5,局部高频误差(RMS)小于等于λ/23。试验证明所采用的方法适合于大口径天文薄镜面的加工。  相似文献   
4.
检测大口径光学平面镜时干涉条纹的子孔径拼接方法   总被引:1,自引:0,他引:1  
提出了用Ritchey_Common法检测大口径光学平面镜时干涉条纹的子孔径拼接方法。通过确立基准点将多幅子孔径检测数据统一到全口径归一化坐标系下进行拼接,解决了在检验光路中因Ritchey角所引起的投影变形问题和如何消去因被检平面的大曲率所造成的像散。通过Zernike多项式拟合重建连续波面,可恢复全口径波面图像。  相似文献   
5.
提出一种基于双通道剪切干涉的高光谱成像方法,并对其进行了信噪比(SNR)分析。介绍了干涉光谱成像系统的光谱复原SNR,对双矩形剪切干涉原理及双通道差分探测SNR进行了论述及仿真。搭建了实验装置,对实际场景目标进行了光谱成像SNR对比实验,获得了双通道差分探测系统的光谱探测SNR,并与非差分探测系统SNR进行了对比分析。结果表明所提差分干涉高光谱成像系统的光谱SNR为单通道系统的槡2倍。  相似文献   
6.
一种大口径大非球面度天文镜面磨制新技术   总被引:9,自引:5,他引:4  
主动抛光盘技术是近年来因天文望远镜的口径越来越大,焦比越来越快而发展起来的一种能够根据需要将抛光盘面实时地主动变形成偏轴非球面来磨制大口径非球面度高精度天文镜面的磨制技术。非球面表面的曲率不仅各点不一致,而且同一点的径向与切向曲率也不相同,所以经典的大的抛光盘不可能使其表面形状始终与所接触的非球面表面形状相吻合;常用的小磨盘抛光的致命缺点是解决不了高频切带,抛光效率也低。而主动抛光盘技术正好解决这些难题。与传统方法相比,它具有较高的磨削速率和较大范围内的自然平滑(无切带)。这是一种用计算机控制的磨镜技术,通过它可以像加工球面一样来加工一个深度的非球面。介绍了我国成功研制的主动抛光盘以及它在直径910mm,焦比F/2抛物面镜加工中的成功应用和加工的结果,以及此项技术将在2m以上直径天文镜面,特别是30m巨型天文光学/红外望远镜的分块子镜磨制中的应用前景。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号