首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   5篇
  国内免费   5篇
化学   17篇
综合类   1篇
物理学   3篇
无线电   29篇
  2024年   3篇
  2023年   4篇
  2022年   6篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   6篇
  2017年   1篇
  2016年   2篇
  2015年   2篇
  2014年   2篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   2篇
  1996年   2篇
  1995年   2篇
排序方式: 共有50条查询结果,搜索用时 828 毫秒
1.
超大尺寸IGZO(InGaZnO)产品在高温高湿(50℃/80%)信赖性评价中易发生异常显示不良(Abnormal Display,AD)。其不良原因主要是集成栅极驱动电路(Gate Driver On Array,GOA)的关键器件M2转移特性曲线(IDS-VGS)在评价中发生了严重正移。本文通过脉冲实验,模拟GOA关键器件M2的实际工作环境,重现了转移特性曲线严重正移的不良现象。通过设置不同的脉冲实验,揭示了造成不良的主要影响因素:M2器件关闭时,漏极与源极之间的压差VDS过大,使IGZO膜层内的氧空位VO+在电场作用下同时向IGZO与GI(Gate Insulator)的边界及源极端迁移,由于氧空位VO+对电子的捕获作用,最终导致转移特性曲线发生正移,并发现迁移的氧空位VO+经过加热后可以复原。此外,在不改变IGZO成膜条件下,通过减小M2器件关闭时的VDS压差,...  相似文献   
2.
利用间接紫外毛细管区带电泳方法完成了对爆炸残留物中7种无机离子(K+,NH+4,NO-2,NO-3,SO2-4,ClO-3,ClO-4)的分离检测。阳离子测定采用的缓冲体系为10 mmol/L吡啶(pH 4.5)-3 mmol/L冠醚,K+和NH+4在2.6 min内达到基线分离,检出限分别为0.25 mg/L和0.10 mg/L(S/N=3)。阴离子测定采用的缓冲体系为40 mmol/L硼酸-1.8 mmol/L重铬酸钾-2 mmol/L硼酸钠(pH 8.6),氢氧化四甲铵为电渗流改性剂,5种阴离子在4.6 min内达到基线分离,检出限为0.10~1.85 mg/L。该方法已成功地应用于实际爆炸物样品种类的判定分析,取得了很好的结果。  相似文献   
3.
研究了二价金属离子在温和条件下(低于100℃,暴露于空气中)从水滑石M2+/Fe2+/Fe3+-LDHs(M=Co,Ni,Mn,Zn)转化成尖晶石铁氧体的过程中所起的作用。结果表明,该转化过程不仅与晶化温度有关,还与M2+在元素周期表中所处的位置有关。当这些二价金属离子处于同一周期并且相邻较近时,M2+的半径越大,水滑石微晶向尖晶石铁氧体的转化就越容易。此外,Fe2+在转化过程中起着至关重要的作用,如果没有Fe2+的参与,在此条件下的转化将无法进行。  相似文献   
4.
介绍一种新型静态存储器——QDR(Quad Data Rate)SRAM的存储器结构、与系统的接口连接、主要的操作时序。参考实际QDR存储器内部组成。利用FPGA实现存储器控制器的设计实现。旨在通过FPGA的快速、灵活、容易修改的特点,设计并实现在高速数据通信系统中,QDR静态存储器用于处理器和接口连接的外设之间的数据交换。着重分析QDR控制器的读/写操作状态机。  相似文献   
5.
过孔搭接失效一直是TFT-LCD行业中重点改善的不良之一。为了解决该不良,本文分析了不同刻蚀模式(ICP和ECCP)对过孔形貌的影响,利用四因子法研究ECCP模式刻蚀参数(压力、偏置/源极射频功率及O_2/SF_6气体比例)对刻蚀速率和均一性的影响,并得出ECCP过孔改善的最佳刻蚀参数。结果表明:ECCP模式下,氮化硅刻蚀过程中物理轰击对GI截面的下沿与Cu接触区域形成损伤后产生的缺陷,是诱发过孔腐蚀的主要因素,ICP模式无腐蚀。反应腔压力增大刻蚀速率增大,均一性下降;偏置射频功率增大,速率增大,均一性提高;源极射频功率增大,速率变化小,均一性下降;O_2/SF_6气体比例对速率影响小,O_2含量越高,均一性越高。为达到PR胶保护GI下沿截面的目的,反应压力增大到1.7Pa,偏置射频功率减小到30kW,源极功率增加到30kW,O_2/SF_6气体保持比例1∶1后,增加了氮化硅的刻蚀量,减小PR胶的内缩量,避免物理溅射表面损伤;同时刻蚀速率达到750nm/s,均一性达到10%,腐蚀发生率为10%~0,使ECCP刻蚀模式对过孔的腐蚀影响得到有效解决。  相似文献   
6.
10mg样品粉末用5mL甲醇超声萃取,离心后,上清液在Waters ACQUTIY UPLC BEH C18色谱柱(2.1mm×50mm,1.7μm)上分离,以含0.1%(体积分数)甲酸的甲醇和水(体积比为87∶13)为流动相进行等度洗脱,流量为0.2mL·min-1。利用光电二极管阵列检测器在波长220nm处对Δ9-四氢大麻酚(Δ9-THC)和Δ9-四氢大麻酚酸A(Δ9-THCA-A)进行定性和定量分析,并采用质谱检测器QDa进行确证。Δ9-THC和Δ9-THCA-A的质量浓度分别在0.50~20.0mg·L-1和2.0~40.0 mg·L-1内与其峰面积呈线性关系,检出限(3S/N)分别为0.10,1.0mg·L-1。加标回收率在81.5%~97.9%之间,测定值的相对标准偏差(n=6)在0.77%~4.1%之间。采用该方法对20个大麻植物样品进行分析,由Δ9-THC和Δ9-THCA-A的测定值计算得总Δ9-THC含量略高于标准方法测定结果。  相似文献   
7.
建立了血液样本中金属元素的微波消解-电感耦合等离子体质谱(ICP-MS)检测方法。通过优化消解条件,以铋(Bi)和铟(In)双内标校正,对死后人体血液样本和一般人群对照样本中镁(Mg)、铬(Cr)、砷(As)、锶(Sr)、镉(Cd)、钡(Ba)、汞(Hg)、铊(Tl)、铅(Pb)9种金属元素含量进行了检测,并运用统计学方法比较了其差异与关联性。结果表明,在2 mL双氧水、5 mL硝酸、190℃的消解条件下,样品的消解效果较好。9种元素线性良好,相关系数(r2)不小于0.997 7,检出限为0.000 4~0.049 6 ng/mL,加标回收率为86.5%~110%,日内相对标准偏差(RSD)为0.50%~5.9%,日间RSD为2.5%~8.5%,回收率和精密度符合检测要求。9种金属元素数据均不符合Komogorov-Smirnov正态性检验,而两组数据的Mann-Whitney U检验结果存在显著差异(P <0.05)。采用Spearman秩相关分析金属之间的相关性,发现大多数金属元素之间显著相关。通过建立二分类Logistic回归模型,研究了样本类型与血样...  相似文献   
8.
罗熹  安莹  王建新  刘耀 《电子与信息学报》2015,37(11):2790-2794
内容中心网络(CCN)是为了适应未来网络通信模式的转变,提供对可扩展和高效内容获取的原生支持而提出一种新型的网络体系架构,内容缓存机制是其研究的关键问题之一。现有机制在缓存节点的选择时往往过于集中,缓存负载分布严重不均,大大降低了网络资源利用率以及系统的缓存性能。该文提出一种基于缓存迁移的协作缓存机制,首先在缓存节点选择时考虑节点的中心性保证内容尽可能缓存在位置更重要的节点。同时,在缓存压力过大时,通过可用缓存空间大小、缓存替换率以及网络连接的稳定性等信息选择合适的邻居节点进行缓存内容的转移,充分利用邻居资源实现负载分担。仿真结果表明该机制能有效地改善缓存负载在节点上分布的均衡性,提高缓存命中率和缓存资源利用率并降低平均接入代价。  相似文献   
9.
内置缓存技术是内容中心网络(Content Centric Networking, CCN)的核心技术之一。现有的研究大多主要针对网络资源利用率的优化,而忽略了网络能耗的问题。该文首先建立了一个能耗模型对CCN的网络能耗进行分析,并设计了一个能效判决条件来优化缓存过程的能效性。进而,在此基础上综合考虑内容流行度和节点中心性等因素提出一种能效感知的概率性缓存机制(E2APC)。仿真结果表明,该机制能在保证较高的缓存命中率和较小的平均响应跳数的同时有效地降低网络的整体能耗。  相似文献   
10.
基于Abaqus圆柱圆周表面激光淬火温度场仿真   总被引:1,自引:1,他引:0  
针对圆柱圆周表面激光淬火的温度场形成特点,利用Abaqus软件对其进行温度场仿真分析。通过对圆柱进行三维实体建模,细化作用面,细分作用时间步长等操作,实现了对圆柱圆周表面激光淬火的温度场瞬态形成仿真。通过对仿真所得结果进行分析,得出对于圆柱圆周表面的激光淬火温度场来说淬火路径开始区域的淬火温度比淬火路径末端区域的淬火温度小。从而说明在圆柱圆周表面激光淬火时,由于激光光斑扫描的方向是趋于已淬火区域,所以已淬火区域的残留温度会对淬火区域的基温有影响,从而使得激光淬火路径末端区域的淬火温度高。研究为利用Abaqus软件对圆柱圆周表面激光淬火温度场形成仿真分析提供了指导,对圆柱圆周表面激光淬火工艺应用于实际生产有很大的帮助。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号