首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   97篇
  免费   5篇
化学   19篇
综合类   1篇
物理学   53篇
无线电   29篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   3篇
  2018年   7篇
  2017年   10篇
  2016年   13篇
  2015年   12篇
  2014年   20篇
  2013年   12篇
  2012年   9篇
  2011年   2篇
  2010年   3篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
排序方式: 共有102条查询结果,搜索用时 328 毫秒
1.
近红外光谱分析技术在茶叶鉴别中的应用研究   总被引:34,自引:6,他引:28  
茶叶快速准确鉴别方法研究是当前茶叶行业亟待解决的一个重要课题。该研究采用近红外光谱结合主成分-马氏距离模式识别方法鉴别了龙井、碧螺春、毛峰和铁观音4种中国名茶。研究结果表明,在6 500~5 300 cm-1波数范围内的光谱,通过MSC预处理方法,用8个主成分建立的模型最好,模型对校正集样本和预测集样本的鉴别率分别达到98.75%和95%。该研究为快速准确鉴别茶叶提供了一种新思路。  相似文献   
2.
为了研究适合激光诱导击穿光谱(LIBS)检测猪肉中重金属铅(Pb)元素含量的光谱预处理方法,将配制的84个猪肉腿肌样品分为校正集和预测集,以相关系数(R)、内部交叉验证均方差(RMSECV)和预测均方根误差(RMSEP)作为评价指标,比较了5种光谱预处理方法对偏最小二乘法(PLS)建模预测效果的影响.结果表明,多元散射校正(MSC)预处理效果最好,定标模型预测值与实验室分析元素检测值的相关系数(R)达到0.9908,RMSECV为0.302,RMSEP为0.282,主成分数为16,18个预测集样品的验证结果的平均相对预测误差(ARPE)为7.8%.说明MSC是LIBS检测猪肉Pb含量的有效光谱预处理方法,该研究为进一步实现食品中重金属快速定量分析提供了方法和数据参考.  相似文献   
3.
以表面增强试剂OTR202和OTR103作为表面增强拉曼光谱(SERS)的活性基底,探索建立甲萘威水溶液的SERS检测方法。首先对比分析了甲萘威水溶液的普通拉曼光谱与SERS。然后分析了表面增强试剂与待测样本的加入量对甲萘威水溶液的SERS的影响。最后分析了质量浓度在0.1~15.0 mg/L范围内的甲萘威水溶液的SERS,并以1374 cm-1处的特征峰强度与甲萘威水溶液浓度进行线性回归,得到线性方程为y=414.5x+481.59,决定系数R2=0.9864。试验结果表明该研究方法对甲萘威水溶液的检测限可达到0.1 mg/L,说明以表面增强试剂OTR202和OTR103为SERS活性基底的SERS检测方法可用于水中甲萘威残留检测。  相似文献   
4.
为了使激光诱导击穿光谱(LIBS)技术更有效地应用于肉类食品品质安全检测领域,选择鸡肉样品进行了初步LIBS实验研究.通过分析软件并参照NIST原子光谱数据库鉴别了样品的LIBS谱线,并且得到了其特征谱线,运用统计学方法分析比较了鸡皮和鸡腿肉中Pb,Cd,Cu,Mn,Ni,Cr六种重金属元素与C元素强度比,得到了此六种元素相对含量的差别.从实验结果得知,鸡皮中Cd和Cu元素相对含量高于鸡腿肉;鸡腿肉中Ni、Mn、Pb和Cr元素的相对含量高于鸡皮,尤其是Ni元素相差最大.同时,实验结果也表明LIBS技术是一种快速而有效的检测和对比肉类食品中重金属元素含量的手段.  相似文献   
5.
为了获得氨基甲酸酯类农药分子的分子结构振动信息,应用密度泛函理论(DFT)中的B3LYP杂化泛函和6-31G(d,p)基组对三种氨基甲酸酯类农药(西维因、克百威和涕灭威)分子进行了几何结构优化和频率计算,利用拉曼光谱仪采集了这三种氨基甲酸酯类农药的实验拉曼光谱,并将理论方法计算的拉曼光谱和实验拉曼光谱进行比较。结果表明,理论方法计算的结果与实验值具有很好的匹配性。对三种氨基甲酸酯类农药分子在400~3 200 cm-1范围内的振动频率进行了全面地归属,找到了氨基甲酸酯类农药分子的四个特征峰,分别位于874,1 014,1 162和1 716 cm-1附近。对比分析三种农药实验拉曼光谱的差异,找到三种农药分子各自不同的特征峰。研究结果为氨基甲酸酯类农药的检测分析提供了理论基础,将应用于农产品中氨基甲酸酯类农药残留的鉴别。  相似文献   
6.
为研究低强度激光辐照对蝗虫活动能力的影响,以减少农药的使用量和降低农药的浓度,选择大功率连续型近红外半导体二极管激光器,针对3龄至4龄期东亚飞蝗蝻虫头部位置,在距离激光发光面4cm处,进行2s和4s的辐照试验,分别观察比较辐照前后蝗虫的活性和活性降低程度.试验结果表明,辐照前,蝗虫具有较高的活性,辐照后蝗虫的活性降低,并逐渐趋于一致性;辐照时间越长,蝗虫的活性降低程度越高。说明低强度近红外激光辐照蝗虫头部位置能明显抑制其活动能力。  相似文献   
7.
共轴双光束LIBS检测土壤中Pb的参数优化   总被引:3,自引:2,他引:1  
为了提高共轴双光束激光诱导击率光谱(DB-LIBS)检测土壤中重金属元素的检测精度,对试验装置进行了参数优化。试验时,以土壤中重金属Pb为例,首先对双光束与单光束作用效果进行对比,单束激光脉冲工作能量均为120mJ,得到双光束作用下土壤中Pb的特征光谱强度明显比单光束作用下增强了2~3倍。然后,分别设置两束激光之间的脉冲延迟时间为0、50和100ns,在每个激光脉冲延迟时间下,设置光谱采集延迟时间从2.6~5.2μs以步长为0.2μs递增,分别对样品的光谱进行采集,获取Pb元素在405.78nm处的特征光谱信息。通过对特征光谱强度和信背比的综合比较,得到最佳的激光脉冲延迟时间为50ns、光谱采集延迟时间为4.6μs,在此条件下,光谱强度的相对标准偏差为0.10。由此表明,参数优化有利于提高共轴DB-LIBS装置的检测精度。  相似文献   
8.
吴宜青  刘津  莫欣欣  孙通  刘木华 《分析化学》2016,(12):1919-1926
利用共轴双脉冲激光诱导击穿光谱( DP-LIBS)技术对植物油(大豆油、花生油和玉米油)中的重金属铬( Cr)含量进行定量分析。采用Ava-Spec双通道高精度光谱仪采集样品的LIBS光谱,然后通过其LIBS谱线图确定了CN分子谱线(421.49 nm)、Ca原子谱线(422.64 nm)及Cr的3条原子谱线(425.39、427.43和428.87 nm),根据上述谱线建立了Cr元素的单变量定标模型和最小二乘支持向量机(LS-SVM)校正模型,并用验证样品对它们进行检验。研究结果表明,对于单变量定标法,大豆油、花生油及玉米油验证样品的平均预测相对误差(PRE)分别为12.57%,12.11%和13.72%;对于三变量LS-SVM法,其定标样品真实值与预测值之间的拟合度 R2分别为0.9785,0.9792和0.9654,验证样品的平均 PRE 分别为8.92%,8.33%和10.98%;对于五变量LS-SVM法(增加两基体元素谱线变量),其定标样品真实值与预测值之间的拟合度R2分别为0.9895,0.9901和0.9855,验证样品的平均PRE分别为7.46%,8.96%和8.95%。由此可知,LS-SVM校正模型性能优于单变量定标法,且五变量LS-SVM校正模型性能优于三变量LS-SVM校正模型;采用LS-SVM法及引入合适的基体元素谱线( CN、Ca)能有效减小定量分析误差,提高LIBS技术对植物油中Cr含量预测的精度。  相似文献   
9.
多菌灵农药的激光拉曼光谱分析   总被引:3,自引:0,他引:3  
实验采集多菌灵农药的固体和液体拉曼光谱信号,对固体的原始拉曼光谱信号进行小波去噪预处理,利用正交试验方法筛选小波去噪参数的最优组合。结果表明,采用db2小波基函数、分解层数为2、阈值方案选择为rigrsure、重调方式为sln时,去噪效果最好,信噪比为62.483。根据不同官能团的振动模式,对去噪后的拉曼光谱分3个波数段(1 400~2 000,700~1 400,200~700 cm-1)进行谱峰归属和分析,得到了多菌灵农药分子在不同波数范围内的特征振动模式,其中,在619,725,964,1 022,1 265,1 274和1 478 cm-1处的拉曼信号较强,可作为固体多菌灵农药的特征峰。从多菌灵农药的液体拉曼光谱中,找到了629,727,1 001,1 219,1 258和1 365 cm-1特征峰,这些特征峰跟固体多菌灵农药的特征峰基本吻合。研究结果可为拉曼光谱分析技术在食品及农产品中农药残留的快速筛选提供判别依据。  相似文献   
10.
为了提高激光诱导击穿光谱(laser induced breakdown spectroscopy,LIBS)实验装置检测赣南脐橙中重金属元素的检测灵敏度和稳定性,可对检测参数进行范围设定。在初次选定延迟时间参数值后,再在包含初定延迟时间的1.10~1.30 μs范围内细分进行实验。实验得出:在该范围内,延迟时间与信背比和被测元素特征谱线强度的关系曲线上出现了多个峰值,并且这些峰值都比初次的要大,用统计学中的区间估计间接求出延迟时间的置信区间为[1.13,1.25],在置信区间内延迟时间由初定的1.20 μs调至1.14 μs时,相对标准偏差(RSD)由0.103降到0.025。由此表明:设定一个LIBS实验装置的参数范围,在对待测元素检测时可以在这一范围内进行自由调节来提高其检测的精度和灵敏度。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号