首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  免费   12篇
  国内免费   17篇
物理学   11篇
无线电   18篇
  2016年   1篇
  2013年   1篇
  2012年   5篇
  2011年   4篇
  2010年   4篇
  2009年   1篇
  2008年   11篇
  2007年   2篇
排序方式: 共有29条查询结果,搜索用时 15 毫秒
1.
梁斌  陈书明  刘必慰 《半导体学报》2008,29(9):1692-1697
采用三维TCAD模拟的手段,针对0.18μm工艺下的真实p-n结,研究了偏压、温度、衬底掺杂浓度和LET对辐射诱导的SET电流脉冲的影响. 研究结果表明,在1.62~1.98V的范围内,偏压对电流脉冲的形状有明显影响,而对2ns内的电荷收集总量几乎没有影响;电流脉冲峰值和2ns内的电荷收集总量均随着温度的增加而降低,但温度对电流脉冲峰值的影响更大,而对电荷收集总量的影响相对较小;在典型的现代工艺条件下,衬底掺杂浓度的起伏对单粒子加固性能的影响基本可以忽略;电流脉冲的峰值和电荷收集量二者均随着LET的增加而增加.  相似文献   
2.
使用3D器件模拟了SEU加固单元的多节点翻转(multiple node upset,MNU)问题.结果表明瞬时悬空节点和电荷横向扩散是MNU的关键原因.对比了MNU和不同存储单元之间的MBU(multiple bit upset),发现它们之间的特点存在较大差异.最后讨论了避免MNU的方法.  相似文献   
3.
秦军瑞  陈书明  刘必慰  刘征  梁斌  杜延康 《中国物理 B》2011,20(12):129401-129401
Variation of substrate background doping will affect the charge collection of active and passive MOSFETs in complementary metal-oxide semiconductor (CMOS) technologies, which are significant for charge sharing, thus affecting the propagated single event transient pulsewidths in circuits. The trends of charge collected by the drain of a positive channel metal-oxide semiconductor (PMOS) and an N metal-oxide semiconductor (NMOS) are opposite as the substrate doping increases. The PMOS source will inject carriers after strike and the amount of charge injected will increase as the substrate doping increases, whereas the source of the NMOS will mainly collect carriers and the source of the NMOS can also inject electrons when the substrate doping is light enough. Additionally, it indicates that substrate doping mainly affects the bipolar amplification component of a single-event transient current, and has little effect on the drift and diffusion. The change in substrate doping has a much greater effect on PMOS than on NMOS.  相似文献   
4.
秦军瑞  陈书明  李达维  梁斌  刘必慰 《中国物理 B》2012,21(8):89401-089401
In this paper,we investigate the temperature and drain bias dependency of single event transient(SET) in 25-nm fin field-effect-transistor(FinFET) technology in a temperature range of 0-135°C and supply voltage range of 0.4 V-1.6 V.Technology computer-aided design(TCAD) three-dimensional simulation results show that the drain current pulse duration increases from 0.6 ns to 3.4 ns when the temperature increases from 0 to 135°C.The charge collected increases from 45.5 fC to 436.9 fC and the voltage pulse width decreases from 0.54 ns to 0.18 ns when supply voltage increases from 0.4 V to 1.6 V.Furthermore,simulation results and the mechanism of temperature and bias dependency are discussed.  相似文献   
5.
使用3D器件模拟了SEU加固单元的多节点翻转(multiple node upset,MNU)问题.结果表明瞬时悬空节点和电荷横向扩散是MNU的关键原因.对比了MNU和不同存储单元之间的MBU(multiple bit upset),发现它们之间的特点存在较大差异.最后讨论了避免MNU的方法.  相似文献   
6.
提出了一种新的SEU加固单元,该单元在保持Whitaker单元基本结构的基础上增加4个晶体管以消除电平退化.SPICE模拟结果表明该单元读写功能正确,静态电流较Whitaker单元下降了4个数量级,写入速度和其他单元相当.通过DESSIS和SPICE混合模拟表明,该单元在LET为94MeV/(mg·cm2)的Au离子撞击下没有发生翻转.  相似文献   
7.
刘必慰  陈建军  陈书明  池雅庆 《物理学报》2012,61(9):96102-096102
基于三维TCAD器件模拟, 研究了带有 n+深阱的90 nm三阱CMOS器件在重离子辐照下产生的电荷共享效应. 研究结果表明在重离子辐照时, n+深阱会导致寄生的NPN双极型晶体管触发, 显著增强NMOS间的电荷共享, 其放大因子达到双阱工艺中寄生PNP晶体管放大因子的2---4倍. 进而分别研究了n阱接触和p 阱接触对寄生NPN双极放大的影响, 结果表明增大p阱接触的面积和减小 n 阱接触的距离将抑制NPN晶体管的放大作用, 而增大n 阱接触的面积将增强NPN的放大作用.  相似文献   
8.
单粒子瞬变中的双极放大效应研究   总被引:1,自引:0,他引:1       下载免费PDF全文
采用三维数值模拟的方法对比研究了单个NMOS晶体管和反相器链中的单粒子瞬变(single event transient,SET)电流脉冲,发现深亚微米工艺下双极放大电流在单管的SET电流脉冲中占主要成分,而在反相器链的SET模拟中不明显,分析二者的区别解释了源/体结偏压的形成过程和放大机理,并证明了双极放大效应受源/体结偏压影响的结论.在此基础上分析了NMOS管中源极的正向电流及其机理,发现台阶区的源极正向电流主要是由扩散作用形成的. 关键词: 单粒子瞬变 双极放大 混合模拟 台阶区电流  相似文献   
9.
刘必慰  陈书明  梁斌  刘征 《半导体学报》2008,29(9):1819-1822
超深亚微米工艺下在电路模拟器中使用独立电流源方法的单粒子瞬态(single event transient,SET)脉冲注入与实验结果有很大误差.作者提出了一种基于二维查找表的耦合电流源注入的方法,并且基于开源的SPICE代码实现.该方法的计算结果与器件/电路混合模拟接近,而其计算时间远小于混合模拟.该法与SPICE集成,可以引入实验测量数据,适合于大规模组合电路的SET错误率分析.  相似文献   
10.
摘要:本文研究了SOI工艺下环形栅NMOS和双边栅NMOS(H型栅NMOS、T型栅NMOS和普通条形栅NMOS)的热载流子效应。基于热载流子退化的化学反应方程式和一种与器件几何结构相关的反应扩散方程,提出了环形栅NMOS和双边栅NMOS的热载流子退化模型。根据此模型得出,热载流子退化的时间指数与NMOS的栅结构密切相关,且环形栅NMOS与双边栅NMOS相比,热载流子退化更加严重。通过对0.5 PD SOI 工艺下这几种不同栅结构的NMOS管的设计、流片和热载流子试验,验证了结论。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号