首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
化学   3篇
力学   1篇
物理学   4篇
  2022年   1篇
  2018年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2006年   1篇
  1996年   1篇
  1995年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
The coupling between an implicit finite elements (FE) code and an explicit spectral elements (SE) code has been explored for solving the elastic wave propagation in the case of soil/structure interaction problem. The coupling approach is based on domain decomposition methods in transient dynamics. The spatial coupling at the interface is managed by a standard coupling mortar approach, whereas the time integration is dealt with an hybrid asynchronous time integrator. An external coupling software, handling the interface problem, has been set up in order to couple the FE software Code_Aster with the SE software EFISPEC3D.  相似文献   
4.
It is not easy to find data in the scientific literature on the quantitative content of individual phytochemicals. It is possible to find groups of compounds and even individual compounds rather easily, but it is not known what their concentration is in cultivated or wild plants. Therefore, the subject of this study was to determine the content of individual compounds in the new Paulownia species, Oxytree, developed in a biotechnology laboratory in 2008 at La Mancha University in Spain. Six secondary metabolites were isolated, and their chemical structure was confirmed by spectral methods. An analytical method was developed, which was then used to determine the content of individual compounds in leaves, twigs, flowers and fruits of Paulownia Clon in Vitro 112®. No flavonoids were found in twigs and fruits of Oxytree, while the highest phenylethanoid glycosides were found in twigs. In this study, we also focused on biological properties (anticoagulant or procoagulant) of extract and four fractions (A–D) of different chemical composition from Paulownia Clon in Vitro 112 leaves using whole human blood. These properties were determined based on the thrombus-formation analysis system (T-TAS), which imitates in vivo conditions to assess whole blood thrombogenecity. We observed that three fractions (A, C and D) from leaves decrease AUC10 measured by T-TAS. In addition, fraction D rich in triterpenoids showed the strongest anticoagulant activity. However, in order to clarify the exact mechanism of action of the active substances present in this plant, studies closer to physiological conditions, i.e., in vivo studies, should be performed, which will also allow to determine the effects of their long-term effects.  相似文献   
5.
We investigate the interactions between ultracold alkali-metal atoms and closed-shell atoms using electronic structure calculations on the prototype system Rb+Sr. There are molecular bound states that can be tuned across atomic thresholds with a magnetic field and previously neglected terms in the collision Hamiltonian that can produce zero-energy Feshbach resonances with significant widths. The largest effect comes from the interaction-induced variation of the Rb hyperfine coupling. The resonances may be used to form paramagnetic polar molecules if the magnetic field can be controlled precisely enough.  相似文献   
6.
Controlling interactions between cold molecules using external fields can elucidate the role of quantum mechanics in molecular collisions. We create a new experimental platform in which ultracold rubidium atoms and cold ammonia molecules are separately trapped by magnetic and electric fields and then combined to study collisions. We observe inelastic processes that are faster than expected from earlier field-free calculations. We use quantum scattering calculations to show that electric fields can have a major effect on collision outcomes, even in the absence of dipole-dipole interactions.  相似文献   
7.
The high-spin van der Waals states are examined for the following dimers: Cr(2) ((13)Sigma(g)(+)), Sc-Cr ((8)Sigma(+), (8)Pi, (8)Delta), and Sc-Kr ((2)Sigma(+), (2)Pi, (2)Delta). These three systems offer a wide range of van der Waals interactions: anomalously strong, intermediate, and typically weak. The single-reference [coupled cluster with single, double, and noniterative triple excitations, RCCSD(T)] method is used in the calculations for all three systems. In addition, a range of configuration-interaction based methods is applied in Cr(2) and Sc-Cr. The three dimers are shown to be bound by the dispersion interaction of varying strength. In a related effort, the dispersion energy and its exchange counterpart are calculated using the newly developed open-shell variant of the symmetry-adapted perturbation theory (SAPT). The restricted open-shell time-dependent Hartree-Fock linear response function is used in the calculations of the dispersion energy in Sc-Cr and Sc-Kr calculations, while the restricted open-shell time-dependent density functional linear response function is used for Cr(2). A hybrid method combining the repulsive restricted open-shell Hartree-Fock (or complete active space self-consistent field) interaction energy with the dispersion and exchange-dispersion terms is tested against the RCCSD(T) results for the three complexes. The Cr(2) ((13)Sigma(g)(+)) complex has the well depth of 807.8 cm(-1) at the equilibrium distance of 6.18a(0) and the dissociation energy of 776.8 cm(-1). The octet-state Sc-Cr is about four times more strongly bound with the order of well depths of (8)Delta>(8)Pi>(8)Sigma(+) and a considerable anisotropy. The enhanced bonding is attributed to the unusually strong dispersion interaction. Sc-Kr ((2)Sigma(+), (2)Pi, (2)Delta) is a typical van der Waals dimer with well depths in the range of 81 cm(-1) ((2)Delta), 84 cm(-1) ((2)Sigma(+)), and 86 cm(-1) ((2)Pi). The hybrid model based on SAPT leads to results which are in excellent qualitative agreement with RCCSD(T) for all three interactions.  相似文献   
8.
We report an ab initio study of the van der Waals region of the O(3P)-H2 potential energy surface based on RCCSD(T) calculations with an aug-cc-pVQZ basis supplemented by bond functions. In addition, an open-shell implementation of symmetry-adapted perturbation theory (SAPT) is used to corroborate the RCCSD(T) calculations and to investigate the relative magnitudes of the various contributions to the van der Waals interaction. We also investigate the effect of the spin-orbit coupling on the position and depth of the van der Waals well. We predict the van der Waals minimum to occur in perpendicular geometry, and located at a closer distance than a secondary well in colinear geometry. The potentials obtained in the present study confirm the previous calculations of Alexander [M. H. Alexander, J. Chem. Phys., 1998, 108, 4467], but disagree with the earlier work of Harding and co-workers [Z. Li, V. A. Apkarian and L. B. Harding, J. Chem. Phys., 1997, 106, 942] as well as with recently refitted surfaces of Brand?o and coworkers [J. Brand?o, C. Mogo and B. C. Silva, J. Chem. Phys., 2004, 121, 8861]. Inclusion of spin-orbit coupling reduces the depth of the van der Waals minimum without causing a change in its position.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号