首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
物理学   19篇
  2022年   3篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2016年   3篇
  2015年   2篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
By decoupling time and length scales in moving window molecular dynamics shock-wave simulations, a new regime of shock-wave propagation is uncovered characterized by a two-zone elastic-plastic shock-wave structure consisting of a leading elastic front followed by a plastic front, both moving with the same average speed and having a fixed net thickness that can extend to microns. The material in the elastic zone is in a metastable state that supports a pressure that can substantially exceed the critical pressure characteristic of the onset of the well-known split-elastic-plastic, two-wave propagation. The two-zone elastic-plastic wave is a general phenomenon observed in simulations of a broad class of crystalline materials and is within the reach of current experimental techniques.  相似文献   
2.
Ultrashort laser pulse transfers metal into a two-temperature warm dense matter state and triggers a chain of hydrodynamic and kinetic processes—melting, expansion, stretching, creation of tensile stress and transition into metastable state. We study the response of aluminum film deposited on a glass substrate to irradiation by a pump laser pulse transmitted through glass. Several films with thicknesses from 350 to 1200 nm have been investigated. The smallest thickness is of the order of the heating depth d T∼100 nm in Al. The d T-layer and the free rear side of the film are coupled through pressure waves propagating between them. Therefore, the processes within d T-layer affects the time dependent displacement Δ x rear(t) of the rear surface. We compare simulated and experimental dependencies Δ x rear(t) obtained by the pump–probe technique. It allows us to define a thickness of molten Al layer and explore the two-temperature processes occurring inside the heated layer.  相似文献   
3.
JETP Letters - Laser shock peening with ultrashort laser pulses has been studied by hydrodynamic and atomistic simulations, as well as experimentally. It has been shown that, in contrast to...  相似文献   
4.
Journal of Experimental and Theoretical Physics - This paper is devoted to the jubilee of I.M. Khalatnikov, the founder and the first director of the Landau Institute for Theoretical Physics of the...  相似文献   
5.
We combine theoretical and experimental methods to study the processes induced by fast laser heating of metal foils. These processes reveal themselves through motion of frontal (irradiated) and rear‐side foil boundaries. The irradiated targets are 0.3‐2 micron thick aluminum foils deposited on much thicker (150 microns) glass plate. The instant boundary positions is measured by pump‐probe technique having ∼40‐150 fs time and ∼1 nm spatial resolutions. Ultrashort laser pulse transforms a frontal surface layer with thickness dT into two‐temperature (TeTi) warm dense matter state. Its quantitative characteristics including its thickness are defined by poorly known coefficients of electron‐ion energy exchange α and electron heat conductivity κ. Fast laser heating rises pressure in the dT‐layer and therefore produce acoustic waves. Propagation and reflection from the frontal and rear boundaries of these waves causes the displacement Δx (t) of boundary positions. Pressure wave profiles, and hence functions Δx (t), depend on thickness dT. This is why the experimental detection of Δx (t) opens a way to accurate evaluation of the coefficients α and κ (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
6.
JETP Letters - An Erratum to this paper has been published: https://doi.org/10.1134/S0021364022350016  相似文献   
7.
Physical processes involved in laser ablation in liquid (LAL) are studied using a gold target irradiated through transparent water. During and after irradiation, the heated material from the surface of a target produces a plume that expands into liquid‐forming nanoparticles (NPs). The LAL method of NP production is ecologically much cleaner than others. A better understanding of the processes associated with complicated hydrodynamic phenomena leading to LAL is important for controlled manufacturing. We consider laser pulses with different durations τL covering fifth orders of magnitudes ranging from 0.1 ps to 0.5 ns and large absorbed fluences Fabs near optical breakdown of liquid. It is shown that the trajectory of the contact boundary with liquid at the middle and late stages after passing the maximum intensity of the longest pulse is rather similar for very different pulse durations if energies Fabs are comparable. We trace how hot (in a few eV range) dense gold plasma expands, cools down, intersects a saturation curve, and condenses into NPs appearing first inside the water‐gold diffusively mixed intermediate layer where gold vapour has the lowest temperature. Later, the pressure around the gold‐water contact drops down below the critical pressure for water. As a result, the nanoparticles find themselves in gaseous water bubble where density of water gradually decreases to 10?4 ? 10?5  g/cm3 at maximum bubble expansion.  相似文献   
8.
9.
Energy-dispersive X-ray microspectroscopy is used for the first time to quantitatively study the spatial displacement of the material of a 100-nm silver film irradiated by a single femtosecond laser pulse focused on a small spot in the diffraction limit. The silver mass distribution over radial cross sections is determined and matter balance is analyzed for the resulting radially symmetric submicron structures of a microcone with a nanospike with various heights and a through hole. Hydrodynamic processes and phase transitions inducing the melting of the film, motion of the melt, and its recrystallization within a focal spot are studied.  相似文献   
10.
Inogamov  N. A.  Zhakhovsky  V. V.  Khokhlov  V. A. 《JETP Letters》2022,115(1):16-22
JETP Letters - Ablation in liquid is numerically simulated with molecular dynamics and hydrodynamics codes. Laser radiation passes through a transparent liquid, illuminates a metal target, and is...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号