首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   4篇
物理学   12篇
  2013年   3篇
  2010年   5篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2005年   2篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
1.
Laser irradiation on hard tissue has produced a resistant surface that is likely to prevent caries. In this study, human enamel and dentine were exposed to nanosecond pulsed Nd:YAG laser with energy densities of 20-40 J/cm(2) and pulse width of 6 ns inducing chemical changes in these tissues. Infrared analysis of human dental enamel and dentine was performed using the KBr method (2mg sample/300 mg KBr). A correlation between non-lased and lased spectra was performed that gives an indication of the changes in organic and inorganic compounds after laser-tissue interaction. Spectra of teeth simultaneously show the inorganic and organic parts of the tissue. The principal bands: amide bands A, I, II, and III from the collagen-matrix, phosphate from the mineral content, and carbonate bands were identified. The normalized area of peak versus peak position was determined. Changes of the bands attributed to the collagen matrix were verified after Nd:YAG irradiation. The present results suggest a chemical modification of organic and mineral compounds by laser. The spectral results indicated an alteration in the absorption bands relative to, essentially, organic compounds.  相似文献   
2.
The purpose of this study was to evaluate the influence of different light sources for in-office bleaching on surface microhardness of human enamel. One hundred and five blocks of third molars were distributed among seven groups. The facial enamel surface of each block was polished and baseline Knoop microhardness of enamel was assessed with a load of 25 g for 5 s. Subsequently, the enamel was treated with 35% hydrogen peroxide bleaching agent and photo-activated with halogen light (group A) during 38 s, LED (group B) during 360 s, and high intensity diode laser (group C) during 4 s. The groups D (38 s), E (360 s), and F (4 s) were treated with the bleaching agent without photo-activated. The control (group G) was only kept in saliva without any treatment. Microhardness was reassessed after 1 day of the bleaching treatment, and after 7 and 21 days storage in artificial saliva. The mean percentage and standard deviation of microhardness in Knoop Hardness Number were: A 97.8 ± 13.1 KHN; B 95.5 ± 12.7 KHN; C 84.2 ± 13.6 KHN; D 128.6 ± 20.5 KHN; E 133.9 ± 14.2 KHN; F 123.9 ± 14.2 KHN; G 129.8 ± 18.8 KHN. Statistical analysis (p < 0.05; Tukey test) showed that microhardness percentage values were significantly lower in the groups irradiated with light when compared with the non-irradiated groups. Furthermore, the non-irradiated groups showed that saliva was able to enhance the microhardness during the measurement times. The enamel microhardness was decreased when light sources were used during the bleaching process and the artificial saliva was able to increase microhardness when no light was used.  相似文献   
3.
It is widely recognized that Nd:YAG can increase enamel resistance to demineralization; however, the safe parameters and conditions that enable the application of Nd:YAG laser irradiation in vivo are still unknown. The aim of this study was to determine a dye as a photoabsorber for Nd:YAG laser and to verify in vitro a safe condition of Nd:YAG irradiation for caries prevention. Fifty-eight human teeth were selected. In a first morphological study, four dyes (waterproof India ink., iron oxide, caries indicator and coal paste) were tested before Nd:YAG laser irradiation, under two different irradiation conditions: 60 mJ/pulse and 10 Hz (84.9 J/cm2); 80 mJ/pulse and 10 Hz (113.1 J/cm2). In a second study, the enamel surface and pulp chamber temperatures were evaluated during laser irradiations. All dyes produced enamel surface melting, with the exception of the caries indicator, and coal paste was the only dye that could be completely removed. All irradiation conditions produced temperature increases of up to 615.08°C on the enamel surface. Nd:YAG laser irradiation at 60 mJ/pulse, 10 Hz and 84.9 J/cm2 promoted no harmful temperature increase in the pulp chamber (ANOVA, p < 0.05). Among all dyes tested, the coal paste was an efficient photoabsorber for Nd:YAG irradiation, considered feasible for clinical practice. Nd:YAG laser at 84.9 J/cm2 can be indicated as a safe parameter for use in caries prevention.  相似文献   
4.
This study evaluated the change that occurs in dental enamel under action of oven heating or Er,Cr:YSGG laser irradiation aiming to obtain a structure more resistant to demineralization. Enamel powder was obtained from bovine teeth. Samples were subjected to oven heating at temperatures of 200, 400, 600, 800, and 1000°C or during laser irradiation with energy densities of 7.53, 10.95, and 13.74 J/cm2. The infrared thermography was used to measure the surface temperature generated in the solid samples of enamel during lasers irradiation. The samples were analyzed by Fourier transform infrared spectroscopy (FTIR), which shows changes on enamel oven heated or laser irradiated, due to treatments, related to carbonates, adsorbed water and hydroxyl content. These compositional effects were more evident in lased samples. These changes may alter the material properties such as its solubility, and decrese of demineralization that is important for caries prevention.  相似文献   
5.
6.
The objective of this work is identifying changes in the collagen bands in heated and rehydrated dentine. We use bovine dentine slices that were heated in oven between 100 and 300 degrees C. The sample hydration was conducted in sodium chloride solution at 0.9 wt.%; the spectra were acquired by a Fourier transform infrared spectrometer in the spectral range of 4000-400 cm-1. Our results show a temperature range (T225 degrees C) where the collagen is denatured and no reversion is observed after rehydration. This work identifies an important characteristic that dentinal collagen can assume when the tissue is heated and rehydrated; these results indicate the denaturation temperature of dentinal collagen to be near 175-200 degrees C.  相似文献   
7.
Blue light, especially from LED devices, is a very frequently used tool in dental procedures. However, the investigations of its effects on dental enamel are focused primarily on enamel demineralization and fluoride retention. Despite the fact that this spectral region can inhibit enamel demineralization, the effects of the irradiation on demineralized enamel are not known. For this reason, we evaluated the effects of blue LED on remineralization of dental enamel. Artificial lesions were formed in bovine dental enamel blocks by immersing the samples in undersaturated acetate buffer. The lesions were irradiated with blue LED (455 nm, 1.38 W/cm2, 13.75 J/cm2, and 10 s) and remineralization was induced by pH-cycling process. Cross-sectional hardness was used to asses mineral changes after remineralization. Non-irradiated enamel lesions presented higher mineral content than irradiated ones. Furthermore, the mineral content of irradiated group was not significantly different from the lesion samples that were not submitted to the remineralization process. Results obtained in the present study show that the blue light is not innocuous for the dental enamel and inhibition of its remineralization can occur.  相似文献   
8.
This paper presents a very simple unstable resonator, made of a concave mirror (total reflector) and a bare plane–convex BK7 lens working as a convex coupling mirror, which is quite efficient for HyBrID copper laser. In addition to a good quality factor (M2=4.9), experimental results showed that it is possible to control the laser output power by introducing a variable aperture iris inside the cavity, close to the coupling lens, without spoiling beam quality. A rough theoretical model helped to explain these results as a combined effect of unstable resonator plus radial gain distribution.  相似文献   
9.
Heating dentin to temperatures <300°C produces tissue browning and electron spin resonance (ESR) radicals. This study reveals the origin of these effects and relates them to conformational changes in collagen molecules and water content in the tissue. Bovine dentin was analyzed by (i) Fourier transform infrared spectroscopy to determine collagen conformation and water content, (ii) ESR spectroscopy operating at the X band to determine the paramagnetic species and (iii) an optical spectrometer in transmission mode to determine changes in the visible spectral absorbance. After heating the tissue to temperatures between 100 and 300°C, some water is eliminated and the hydrogen bonds, which determine collagen alpha-helix structure stabilization, are lost. After elimination, the collagen matrix is changed and electrons are probably trapped, giving rise to ESR signals and absorption bands in the ultraviolet–visible spectral range.  相似文献   
10.
ABSTRACT

Changes to the structure of the organic matrix of the dentin tissue were determined after sample grinding and heating. Powder dentin measuring 25–38 µm and slices with a thickness of about 50 µm were employed. Spectra acquisition was conducted with a Fourier-transform infrared spectrometer. The thermal treatment was performed between 100°C and 300°C, with steps of 25°C. After grinding, two bands (1283.5 ± 0.5 cm?1 and 1240.7 ± 0.5 cm?1) shifted to higher wavenumbers, while three bands (1339.5 ± 0.5 cm?1, 1283.5 ± 0.5 cm?1, and 1202.7 ± 0.5 cm?1) shifted to lower wavenumbers after thermal treatment in the range 100–300°C; the band at 1283.5 ± 0.5 cm?1 shifted only 2 cm?1. Thermal treatment produced a wavenumber shift in the opposite direction compared with the shift produced after grinding. The observed changes in the vibration modes of the structure indicate that sample preparation or sterilization involving grinding and heating must be carefully evaluated in order to preserve the natural characteristic of the collagen structure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号