首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
化学   2篇
物理学   5篇
  2018年   2篇
  2017年   1篇
  2016年   2篇
  1974年   1篇
  1971年   1篇
排序方式: 共有7条查询结果,搜索用时 406 毫秒
1
1.
The results of the investigation of the electronic structure of the conduction band in the energy range 5–25 eV above the Fermi level EF and the interfacial potential barrier upon deposition of aziridinylphenylpyrrolofullerene (APP-C60) and fullerene (C60) films on the surface of the real germanium oxide ((GeO2)Ge) have been presented. The content of the oxide on the (GeO2)Ge surface has been determined using X-ray photoelectron spectroscopy. The electronic properties have been measured using the very low energy electron diffraction (VLEED) technique in the total current spectroscopy (TCS) mode. The regularities of the change in the fine structure of total current spectra (FSTCS) with an increase in the thickness of the APP-C60 and C60 coatings to 7 nm have been investigated. A comparison of the structures of the FSTCS maxima for the C60 and APP-C60 films has made it possible to reveal the energy range (6–10 eV above the Fermi level EF) in which the energy states are determined by both the π* and σ* states and the FSTCS spectra have different structures of the maxima for the APP-C60 and unsubstituted C60 films. The formation of the interfacial potential barrier upon deposition of APP-C60 and C60 on the (GeO2)Ge surface is accompanied by an increase in the work function of the surface EvacEF by the value of 0.2–0.3 eV, which corresponds to the transfer of the electron density from the substrate to the organic films under investigation. The largest changes occur with an increase in the coating thickness to 3 nm, and with further deposition of APP-C60 and C60, the work function of the surface changes only slightly.  相似文献   
2.
Physics of the Solid State - The results of the investigation of the density of unoccupied electronic states (DOUS) in the energy range from 5 to 20 eV above the Fermi level (E F) in...  相似文献   
3.
Physics of the Solid State - The unoccupied electron states and the boundary potential barrier during deposition of ultrathin films of dimethyl-substituted thiophene–phenylene coolygomers of...  相似文献   
4.

The results of examination of the electronic structure of the conduction band of naphthalenedicarboxylic anhydride (NDCA) films in the process of their deposition on the surface of oxidized silicon are presented. These results were obtained using total current spectroscopy (TCS) in the energy range from 5 to 20 eV above the Fermi level. The energy position of the primary maxima of the density of unoccupied states (DOUS) of an NDCA film was determined based on the experimental TCS data and calculated data and compared with the position of the DOUS maxima of a naphthalenetetracarboxylic dianhydride (NTCDA) film. The theoretical analysis involved calculating the energies and the spatial distribution of orbitals of the molecules under study at the B3LYP/6-31G(d) DFT (density functional theory) level and correcting the obtained energies in accordance with the procedure that was proven effective in earlier studies of the conduction band of films of small conjugated organic molecules. It was found that the DOUS maxima of the NTCDA film in the studied energy interval from 5 to 20 eV above the Fermi level are shifted toward lower electron energies by 1–2 eV relative to the corresponding DOUS maxima of the NDCA film Subdivision of the Ufa Federal Research Centre of the.

  相似文献   
5.
A cluster expansion for the nth order correction to the energy of a many-electron atom is derived. A possible application to the calculation of the third order correction to the energy is considered.  相似文献   
6.
7.
This paper presents the results of the investigation of the interface potential barrier and vacant electronic states in the energy range of 5 to 20 eV above the Fermi level (EF) in the deposition of perylene tetracarboxylic dianhydride (PTCDA) films on the oxidized germanium surface ((GeO2)Ge). The concentration of oxide on the (GeO2)Ge surface was determined by X-ray photoelectron spectroscopy. In the experiments, we used the recording of the reflection of a test low-energy electron beam from the surface, implemented in the mode of total current spectroscopy. The theoretical analysis involves the calculation of the energy and spatial distribution of the orbitals of PTCDA molecules by the density functional theory (DFT) using B3LYP functional with the basis 6-31G(d), followed by the scaling of the calculated values of the orbital energy according to the procedure well-proven in the studies of small organic conjugated molecules. The pattern of changes in the fine structure of the total current spectra with increasing thickness of the PTCDA coating on the (GeO2)Ge surface to 6 nm was studied. At energies below 9 eV above EF, there is a maximum of the density of unoccupied electron states in the PTCDA film, formed mainly by π* molecular orbitals. The higher density maxima of unoccupied states are of σ* nature. The formation of the interface potential barrier in the deposition of PTCDA at the (GeO2)Ge surface is accompanied by an increase in the work function of the surface, EvacEF, from 4.6 ± 0.1 to 4.9 ± 0.1 eV. This occurs when the PTCDA coating thickness increases to 3 nm, and upon further deposition of PTCDA, the work function of the surface does not change, which corresponds to the model of formation of a limited polarization layer in the deposited organic film.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号