首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   18篇
  免费   0篇
化学   8篇
力学   1篇
数学   3篇
物理学   6篇
  2016年   1篇
  2011年   1篇
  2010年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1997年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
  1986年   1篇
排序方式: 共有18条查询结果,搜索用时 15 毫秒
1.
2.
A series of chiral phosphine-phosphite ligands 1-6 have been synthesized and used in the enantioselective palladium-catalyzed reaction of rac-1,3-diphenyl-2-propenyl acetate with dimethyl malonate as nucleophile. Ligands 1a, 2, 3, 5a, 6a, and 6b have been synthesized starting from racemic tert-butylphenylphosphinoborane. The use of dynamically resolved Li phosphide (-)-sparteine provided the optically pure ligands. Crystals of the allylpalladium (6a) complex were obtained, suitable for X-ray crystal structure determination. The X-ray crystal structure of the allylpalladium (6a) complex revealed a longer palladium-carbon bond distance trans to the phosphine moiety indicating that the attack of the nucleophile takes place at the carbon trans to the phosphine moiety. This was confirmed by the fact that the phosphine moiety did not affect the enantioselectivity directly. Under mild reaction conditions, enantioselectivities up to 83% were obtained (25 degrees C) with ligand 1e. Systematic variation of the ligand bridge and the phosphite moiety showed that the configuration of the product is controlled by the atropisomerism of the biphenyl substituent at the phosphite moiety. The conformation of the biphenyl group, in turn, is controlled by the substituent at the chiral carbon in the bridge. Ligands with large bite angles yielded higher enantioselectivities.  相似文献   
3.
Well-crystallized kaolinite (K) was initially reacted at 60 degrees C with a water/dimethylsulfoxide (DMSO) mixture and the resulting intercalation derivative (K-DMSO) was characterized by powder X-ray diffractometry (PXRD), thermal analysis (simultaneous TG and DSC), and Fourier-transformed infrared spectroscopy (FTIR). Benzamide crystals were then melted with the K-DMSO derivative at 140 degrees C for 4 days, when a gradual displacement of DMSO by benzamide was observed within the interlayer spacing of the modified kaolinite. The resulting material, after extensive washing with acetone, was characterized and compared to the results obtained previously for the K-DMSO composite. Benzamide intercalation proceeded by gradual displacement of DMSO molecules until completion. The structural stabilization of the K-BZ derivative was explained through the establishment of hydrogen bonds between the carbonyl oxygen atoms of the intercalated benzamide and aluminol groups present at the surface of the kaolinite layer. The interlamellar spacing of K-BZ was shown to be possibly occupied by benzamide molecules that were located at a 68 degrees orientation in relation to the layer surface. Unlike most intercalation molecules such as DMSO, variations in the interplanar spacing of kaolinite were consistent with the nonkeying of any other part of the molecule between the aluminosilicate interlayers. Copyright 2000 Academic Press.  相似文献   
4.
A series of air- and water-stable tertiary phosphine-stabilized arsenium salts of the type R(3)P-->AsR(2)(+)PF(6)(-) has been isolated. In the crystal structures of two chiral triarylphosphine complexes of prochiral methylphenylarsenium hexafluorophosphate, the stereochemistry around arsenic is trigonal pyramidal with the phosphorus atom occupying the apical position, the As-P bond being orthogonal to the plane of the trigonal (lone-pair included) arsenium ion: Ph(3)P-->AsMePh(+) PF(6)(-), P2(1)/c, a = 10.7775(2) A, b = 17.7987(3) A, c = 13.3797(2) A, beta = 109.066(1) degrees, V = 2425.78(7) A(3), T = 200 K, Z = 4; Ph(2)(2-MeOC(6)H(4))P-->AsMePh(+) PF(6)(-), P1, a = 10.8077(2) A, b = 10.9741(2) A, c = 13.5648(2) A, alpha = 99.0162(9) degrees, beta = 105.2121(9) degrees, gamma = 116.4717(9) degrees, V = 1318.11(5) A(3), T = 200 K, Z = 2. The arsenium ion in each case appears to be further stabilized by conjugation of the lone pair with the phenyl group, with which the arsenic and methyl-carbon atoms are almost coplanar. In the crystal structure of the 2-(methoxymethylphenyl)diphenylphosphine adduct of methylphenylarsenium hexafluorophosphate, there operates a counteractive chelate effect in which anchimeric oxygen coordination to arsenic destabilizes the arsenic-phosphorus bond in the six-membered chelate ring. Although they are stable, phosphine-stabilized arsenium salts undergo rapid phosphine exchange and attack at arsenic by anionic carbon and oxygen nucleophiles to give tertiary arsines and arsinous acid esters, respectively, with liberation of the phosphine.  相似文献   
5.
The validity of the axiomatization of the Harsanyi solution for NTU-games by Hart (1985) is shown to depend on the regularity conditions imposed on games. Following this observation, we propose two related axiomatic characterizations, one of the symmetric egalitarian solution (Kalai and Samet, 1985) and one of the consistent solution (Maschler and Owen, 1992). The three axiomatic results are studied, evaluated and compared in detail.Revised October 2004We thank an anonymous referee and an associate editor for their helpful comments. Geoffroy de Clippel also thanks Professors Sergiu Hart, Jean-François Mertens and Enrico Minelli. Horst Zank thanks the Dutch Science Foundation NWO and the British Council for support under the UK-Netherlands Partnership Programme in Science (PPS 706). The usual disclaimer applies.  相似文献   
6.
Marco Zank  Olaf Steinbach 《PAMM》2016,16(1):777-778
For the solution of the wave equation a space-time energetic boundary integral formulation is used. The resulting single layer boundary integral equation is discretised by a conforming ansatz space on the lateral boundary. To derive an adaptive scheme an a posteriori error estimator based on the representation formula is used. Finally, numerical examples for a one-dimensional spatial domain are presented. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   
7.
A nonlinear time dependent fluid simulation model is developed that describes the evolution of magnetohydrodynamic waves in the presence of collisional and charge exchange interactions of a partially ionized plasma. The partially ionized plasma consists of electrons, ions and a significant number of neutral atoms. In our model, the electrons and ions are described by a single fluid compressible magnetohydrodynamic (MHD) model and are coupled self-consistently to the neutral gas, described by the compressible hydrodynamic equations. Both the plasma and neutral fluids are treated with different energy equations that describe thermal energy exchange processes between them. Based on our self-consistent model, we find that propagating Alfvénic and fast/slow modes grow and damp alternately through a nonlinear modulation process. The modulation appears to be robust and survives strong damping by the neutral component.  相似文献   
8.
The neutron reflectivity profiles from the interface between silicon and aqueous phase-in-oil high internal phase emulsions of steadily increasing surfactant hydrophilicity, are reported for two isotopic contrasts for each surfactant. Layered models are required to fit the structured reflectivity profiles that demonstrate that the oxidised top layer of the silicon is always covered by a surfactant monolayer. Interposed between the surfactant monolayer and the bulk emulsion is a layer of oil--a geometric effect caused by reorganisation of the aqueous droplets. As the surfactant hydrophilicity increases, alternating aqueous and oil+surfactant layers are inserted between this topmost oil layer and the oxide attached surfactant monolayer. The resulting structures have compositions and layer spacings suggestive of sections from lamellar phases. This increase in layer ordering with increasing surfactant hydrophilicity is expected. The bulk emulsions are observed to exhibit lamellar or sponge phases increasingly as surfactant hydrophilicity increases.  相似文献   
9.
We have undertaken a systematic study of the oxidation chemistry for a range of SiOC ceramics derived from silsesquioxane polymeric precursors. This study examines the oxidation for 500 hours at 600, 800, 1000 and 1200°C for four SiOC powders. The material changes upon oxidation were characterized qualitatively by color change and optical microscopy and quantitatively by weight and composition change. In this study we employ a very easy method that uses the weight change upon oxidation and a carbon analysis after oxidation to arrive at the composition of the oxidized SiOC. Combined these qualitative and quantitative techniques have shown that on oxidation at 800 and 600°C the SiOC composition is more rapidly changed to that of silica than oxidation over the same time frame at 1000 or 1200°C. The data indicates that this difference is due to the relative rates of oxidation of the excess carbon versus the Si—C bonds in the SiOC. At lower temperatures initially the carbon oxidation predominates which leads to higher porosity throughout the material and an increase in the surface area with eventually complete oxidation to silica. At higher temperatures the Si—C bond oxidation rate is comparable to the rate of oxidation of carbon. This allows a silica-like surface to build up on the SiOC, which slows all subsequent reactions due to the necessity to diffuse O2 in and COx out of the bulk. Under these oxidation conditions materials that originally contain high amounts of excess carbon are more quickly oxidized to silica than those that contain minimal amounts of excess carbon, as confirmed by elemental analysis and optical microscopy. Regardless of the time or temperature of the oxidation conditions no materials were found to be completely stable to oxidation. SiOC materials with low levels of excess carbon showed the best resistance to change upon oxidation.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号