首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
物理学   2篇
  2000年   1篇
  1998年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A design of a Ku-band 17.1-GHz four-cavity coaxial gyroklystron amplifier for driving future linear colliders is presented. The X-band input cavity operates in the TE0.11 mode, whereas the remaining three cavities (buncher, penultimate, and output) operate in the TE021 mode, doubling the frequency of the input signal. The electron beam parameters are the following: current of 540 A, voltage of 460 kV, perpendicular-to-parallel velocity ratio of 1.5, and a parallel velocity spread of 6.4%. The output cavity has been simulated as (1) zero-drive unstable with Q-factor of 320 and (2) zero-drive stable with Q-factor of 250. The simulations show that the maximum efficiency in the first case is 37.4%, and in the second one is 34.4%. In both cases, a high gain of 60 dB at a 100-MW output power level can be realized  相似文献   
2.
A high-power transit-time oscillator operating at 4.0 GHz in the cylindrical-cavity TM010 mode is proposed. Without requiring an externally applied magnetic field, the oscillator comprises a diode electron gun and a cylindrical cavity that are combined into a single unit that makes for a compact, lightweight device. The transit-time effect, which underlies the operation principle of the oscillator, is examined through a small-signal analysis from which a relation embodying the cavity length, resonant frequency, and cathode voltage is derived. Proper DC voltages of 18 kV are applied to the diode gun which runs in the space-charge-limited regime and produces a 27 A-current hollow electron beam. Output power is extracted axially from the system by aperture coupling the cavity to an external waveguide where outgoing travelling waves with 60 kW peak power are observed by means of 2.5 D particle-in-cell computer simulations  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号