首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   54432篇
  免费   9322篇
  国内免费   7023篇
化学   39545篇
晶体学   644篇
力学   3062篇
综合类   588篇
数学   5959篇
物理学   20979篇
  2024年   187篇
  2023年   1098篇
  2022年   1837篇
  2021年   1932篇
  2020年   2199篇
  2019年   2142篇
  2018年   1852篇
  2017年   1743篇
  2016年   2655篇
  2015年   2590篇
  2014年   3062篇
  2013年   3948篇
  2012年   4763篇
  2011年   4782篇
  2010年   3320篇
  2009年   3234篇
  2008年   3550篇
  2007年   3219篇
  2006年   3082篇
  2005年   2654篇
  2004年   2055篇
  2003年   1755篇
  2002年   1684篇
  2001年   1339篇
  2000年   1242篇
  1999年   1292篇
  1998年   998篇
  1997年   926篇
  1996年   900篇
  1995年   781篇
  1994年   683篇
  1993年   610篇
  1992年   484篇
  1991年   407篇
  1990年   426篇
  1989年   303篇
  1988年   214篇
  1987年   160篇
  1986年   174篇
  1985年   143篇
  1984年   72篇
  1983年   77篇
  1982年   72篇
  1981年   46篇
  1980年   22篇
  1979年   11篇
  1977年   5篇
  1973年   5篇
  1957年   11篇
  1916年   3篇
排序方式: 共有10000条查询结果,搜索用时 0 毫秒
1.
2.
3.
JPC – Journal of Planar Chromatography – Modern TLC - A new high-performance thin-layer chromatographic (HPTLC) method has been developed for the simultaneous estimation of...  相似文献   
4.
5.
6.
In the view of substrate availability, atomic efficiency and cost, directly using arenols as coupling partners in cross‐coupling, would be one of the most attractive goals. Up to date, many efforts have been made to activate the C—O bond of phenols with different strategies, for example, through in‐situ formed intermediates, through a catalytic reductive dearomatization‐condensation‐rearomatization sequence or catalytic deoxygenation. In this review, we summarized recent advances in cross‐couplings of arenols as the electrophiles via C—O activation.  相似文献   
7.
Three‐dimensional (3D) nanometal films serving as current collectors have attracted much interest recently owing to their promising application in high‐performance supercapacitors. In the process of the electrochemical reaction, the 3D structure can provide a short diffusion path for fast ion transport, and the highly conductive nanometal may serve as a backbone for facile electron transfer. In this work, a novel polypyrrole (PPy) shell@3D‐Ni‐core composite is developed to enhance the electrochemical performance of conventional PPy. With the introduction of a Ni metal core, the as‐prepared material exhibits a high specific capacitance (726 F g?1 at a charge/discharge rate of 1 A g?1), good rate capability (a decay of 33 % in Csp with charge/discharge rates increasing from 1 to 20 A g?1), and high cycle stability (only a small decrease of 4.2 % in Csp after 1000 cycles at a scan rate of 100 mV s?1). Furthermore, an aqueous symmetric supercapacitor device is fabricated by using the as‐prepared composite as electrodes; the device demonstrates a high energy density (≈21.2 Wh kg?1) and superior long‐term cycle ability (only 4.4 % and 18.6 % loss in Csp after 2000 and 5000 cycles, respectively).  相似文献   
8.
9.
Rupestonic acid, a potential anti‐influenza agent, is an important and characteristic compound in Artemisia rupestris L., a well‐known traditional Uighur medicine for the treatment of colds. In the present study, high‐performance liquid chromatography combined with electrospray ionization quadrupole time‐of‐flight tandem mass spectrometry was used to detect and identify the metabolites in rat urine after oral administration of rupestonic acid. A total of 10 metabolites were identified or partially characterized. The structure elucidations of the metabolites were performed by comparing the changes in accurate molecular masses and fragment ions with those of the parent compound. The results showed that the main metabolites of rupestonic acid in rat urine were formed by oxidation, hydrogenation and glucuronidation. A metabolism pathway was proposed for the first time based on the characterized structures. This metabolism study can provide essential information for drug discovery, design and clinical application of rupestonic acid. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号