首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
数学   1篇
物理学   9篇
  2012年   1篇
  2011年   1篇
  2007年   2篇
  2000年   1篇
  1997年   1篇
  1996年   1篇
  1992年   1篇
  1988年   1篇
  1985年   1篇
排序方式: 共有10条查询结果,搜索用时 31 毫秒
1
1.
2.
We report the first experimental violation of Bell's inequality in the spatial domain using the Einstein-Podolsky-Rosen state. Two-photon states generated via optical spontaneous parametric down-conversion are shown to be entangled in the parity of their one-dimensional transverse spatial profile. Superpositions of Bell states are prepared by manipulation of the optical pump's transverse spatial parity-a classical parameter. The Bell-operator measurements are made possible by devising simple optical arrangements that perform rotations in the one-dimensional spatial-parity space of each photon of an entangled pair and projective measurements onto a basis of even-odd functions. A Bell-operator value of 2.389+/-0.016 is recorded, a violation of the inequality by more than 24 standard deviations.  相似文献   
3.
4.
We present the novel embodiment of a photonic qubit that makes use of one continuous spatial degree of freedom of a single photon and relies on the parity of the photon's transverse spatial distribution. Using optical spontaneous parametric down-conversion to produce photon pairs, we demonstrate the controlled generation of entangled-photon states in this new space. Specifically, two Bell states, and a continuum of their superpositions, are generated by simple manipulation of a classical parameter, the optical-pump spatial parity, and not by manipulation of the entangled photons themselves. An interferometric device, isomorphic in action to a polarizing beam splitter, projects the spatial-parity states onto an even-odd basis. This new physical realization of photonic qubits could be used as a foundation for future experiments in quantum information processing.  相似文献   
5.
We generalize the traditional concept of temporal optical interferometry to any degree of freedom of a coherent optical field. By identifying the structure of a unitary optical transformation that we designate the generalized phase operator, we enable optical interferometry to be carried out in any modal basis describing a degree of freedom. The structure of the generalized phase operator is that of a fractional optical transform, thus establishing the connection between fractional transforms, optical interferometry, and modal analysis.  相似文献   
6.
7.
We present high resolution 133Cs-13C double resonance NMR data and 13C-13C NMR correlation spectra of 13C enriched samples of the polymeric phase of CsC60. These data lead to a partial assignment of the lines in the 13C NMR spectrum of CsC60 to the carbon positions on the C60 molecule. A plausible completion of the assignment can be made on the basis of an ab initio calculation. The data support the view that the conduction electron density is concentrated at the C60 "equator," away from the interfullerene bonds.  相似文献   
8.
9.
10.
We describe an approach to determining both the angular and the radial modal content of a scalar optical beam in terms of optical angular momentum modes. A modified Mach-Zehnder interferometer that incorporates a spatial rotator to determine the angular modes and an optical realization of the fractional Hankel transform (fHT) to determine the radial modes is analyzed. Varying the rotation angle and the order of the fHT produces a two-dimensional (2D) interferogram from which we extract the modal coefficients by simple 2D Fourier analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号