首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14篇
  免费   0篇
化学   2篇
物理学   12篇
  2013年   11篇
  2012年   1篇
  2007年   1篇
  2005年   1篇
排序方式: 共有14条查询结果,搜索用时 296 毫秒
1.
R.B. Wei  HX Zhang  YN He 《Liquid crystals》2013,40(12):1821-1830
Nematic liquid crystalline elastomer (LCE) actuators possessing both photoluminescent (PL) and stimuli-responsive functions were fabricated and studied. PL-dyes (1-pyrenemethyl acrylate and 4-bromo-2,6-bis-(1?-methyl-benzimidazolyl) pyridine loaded with Eu(III) ion) were synthesised and characterised, and then the dyes were mixed with an acrylate side-on liquid crystalline monomer, a cross-linker and a photo-initiator. Through magnetic field alignment, well-defined LCE micropillar PL actuators were fabricated from the mixed samples by a method combining soft lithography and photo-polymerisation/photo-cross-linking. Microscopic observations indicated that the LCE micropillars showed reversible thermomechanical deformation at the nematic-to-isotropic transition temperature. During the reversible contraction and extension process, the LCE actuator containing 1-pyrenemethyl moieties showed stable photoluminescence, while for the LCE actuator doped with 4-bromo-2,6-bis-(1-methyl-benzimidazolyl)pyridine/Eu(III) complex, the PL emission was quenched at about 100°C, which was before the pillars contraction occurring at a higher temperature. When cooled down to room temperature, the contracted LCE micropillars recovered their original shape and the initial PL emission state. The micron-sized LCE actuators can be used for thermomechanical devices and machines with different PL functions at the same time.  相似文献   
2.

Background  

We applied a combined experimental and computational approach to ascertain how peptides interact with host and microbial membrane surrogates, in order to validate simulation methodology we hope will enable the development of insights applicable to the design of novel antimicrobial peptides. We studied the interactions of two truncated versions of the potent, but cytotoxic, antimicrobial octadecapeptide protegrin-1, PC-72 [LCYCRRRFCVC] and PC-73 [CYCRRRFCVC].  相似文献   
3.
Density functional theory calculations of He defect properties in iron have shown an unexpected influence of magnetism arising from the defect's electronic structure. In contrast with previous work that neglected such effects, the results indicate that the tetrahedral position is energetically more favorable for the He interstitial than the octahedral site. This may have significant implications for He clustering and bubble nucleation, which will impact material performance in future fusion reactors. These results provide the basis for development of improved atomistic models.  相似文献   
4.
5.
Clusters of self-interstitial atoms are formed in metals by high-energy displacement cascades, often in the form of small dislocation loops with a perfect Burgers vector. In isolation, they are able to undergo fast, thermally activated glide in the direction of their Burgers vector, but do not move in response to a uniform stress field. The present work considers their ability to glide under the influence of the stress of a gliding dislocation. If loops can be dragged by a dislocation, it would have consequences for the effective cross-section for dislocation interaction with other defects near its glide plane. The lattice resistance to loop drag cannot be simulated accurately by the elasticity theory of dislocations, so here it is investigated in iron and copper by atomic-scale computer simulation. It is shown that a row of loops lying within a few nanometres of the dislocation slip plane can be dragged at very high speed. The drag coefficient associated with this process has been determined as a function of metal, temperature and loop size and spacing. A model for loop drag, based on the diffusivity of interstitial loops, is presented. It is tested against data obtained for the effects of drag on the stress to move a dislocation and the conditions under which a dislocation breaks away from a row of loops.  相似文献   
6.
Atomic recoil events at and near {001} surfaces of Ni3Al due to elastic collisions between electrons and atoms have been simulated by molecular dynamics to obtain the sputtering threshold energy as a function of atomic species, recoil direction and atomic layer of the primary recoil atom. The minimum sputtering energy occurs for adatoms and is 3.5 and 4.5?eV for Al and Ni adatoms on the Ni–Al surface (denoted ‘M’), respectively, and 4.5?eV for both species on the pure Ni surface (denoted ‘N’). For atoms within the surface plane, the minimum sputtering energy is 6.0?eV for Al and Ni atoms in the M plane and for Ni atoms in the N surface. The sputtering threshold energy increases with increasing angle, θ, between the recoil direction and surface normal, and is almost independent of azimuthal angle, ?, if θ<60°; it varies strongly with ? when θ>60°, with a maximum at ??=?45° due to ?{110}? close-packed atomic chains in the surface. The sputtering threshold energy increases significantly for subsurface recoils, except for those that generate efficient energy transfer to a surface atom by a replacement collision sequence. The implications of the results for the prediction of the mass loss due to sputtering during microanalysis in a FEG STEM are discussed.  相似文献   
7.
The destruction processes of stacking fault tetrahedra (SFTs) induced by gliding dislocations were examined by transmission electron microscopy (TEM) in situ straining experiments for SFTs with edge lengths ranging from 10 to 50 nm. At least four distinct SFT destruction processes were identified: (1) consistent with a Kimura–Maddin model for both screw and 60° dislocations, (2) stress-induced SFT collapse into a triangular Frank loop, (3) partial annihilation leaving an apex portion and (4) complete annihilation. Process (4) was observed at room temperature only for small SFTs (~10 nm); however, this process was also frequently observed for larger SFTs (~30 nm) at higher temperature (~853 K). When this process was induced, the dislocation always cross-slipped, indicating only screw dislocations can induce this process.  相似文献   
8.
Constant-area and fully relaxed molecular dynamics methods are employed to study the properties of the surface and point defects at and near {001} surfaces of bulk and thin-film Ni, Al and Ni3Al respectively. The surface tension is larger than the surface energy for all {001} surfaces considered in the sequence: Al (1005?mJ?m?2)<?Ni3Al (mixed Ni–Al plane outermost, 1725?mJ?m?2)<?Ni3Al (all-Ni-atoms plane outermost, 1969?mJ?m?2)<?Ni (1993?mJ?m?2). For a surface of bulk Ni3Al crystal with a Ni–Al mixed plane outermost, Al atoms stand out by 0.0679?Å compared with the surface Ni atoms and, for the all-Ni-atoms surface, Al atoms in the second layer stand out by 0.0205?Å compared with Ni atoms in the same layer. Vacancy formation energies are about half the bulk values in the first layer and reach a maximum in the second layer where the atomic energy is close to the bulk value but the change in embedding energy of neighbouring atoms before and after vacancy formation is greater than that in the bulk. Both the vacancy formation energy and the surface tension suggest that the fourth layer is in a bulk state for all the surfaces. The formation energy of adatoms, antisite defects and point-defect pairs at and near {001} surfaces of Ni3Al are also given.  相似文献   
9.
Copper-rich precipitates can nucleate and grow in ferritic steels containing small amounts of copper in solution and this affects mechanical properties. Growth kinetics, composition and structure of precipitates under irradiation are different from those under thermal ageing, and also vary with type of radiation. This implies that the interaction between radiation defects, i.e. vacancies, self-interstitial atoms (SIAs) and their clusters, and precipitates is influential. It is studied here by atomic-scale computer simulation. The results are compared with those of elasticity theory based on the size misfit of precipitates and defects, and the modulus difference between bcc iron and bcc copper. It is found that SIA defects are repelled by precipitates at large distance but, like vacancies, attracted at small distance. Copper precipitates in iron can, therefore, be sinks for both vacancy and interstitial defects and hence can act as recombination centres under irradiation conditions. A tentative explanation for the mixed Cu–Fe structure of precipitates observed in experiment and the absence of precipitate growth under neutron irradiation is given. More generally, agreement between the simulations and elasticity theory suggests that the results are not artefacts of the atomic model: both vacancy and interstitial defects in metals may bind to precipitates with weaker cohesion than the matrix.  相似文献   
10.
Atomic-scale computer simulation is used to study the interaction between a vacancy and a cluster of self-interstitial atoms in metals with hcp, fcc and bcc crystal structure: α-zirconium, copper and α-iron. Effects of cluster size, atomic structure, dislocation nature of the cluster side and temperature are investigated. A vacancy can recombine with any interstitial in small clusters and this does not affect cluster mobility. With increasing sizes clusters develop dislocation character and their interaction with vacancies depends on whether the cluster sides dissociate into partial dislocations. A vacancy recombines only on undissociated sides and corners created with undissociated segments. Vacancies inside the cluster perimeter do not recombine but restrict cluster mobility. Temperature enhances recombination by either increasing the number of recombination sites or assisting vacancy diffusion towards such sites. The results are discussed with relevance to differences in irradiation microstructure evolution of bcc, fcc and hcp metals and higher level theoretical modelling techniques.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号