首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   62篇
  免费   9篇
  国内免费   8篇
化学   47篇
晶体学   1篇
力学   4篇
数学   9篇
物理学   18篇
  2024年   1篇
  2023年   1篇
  2022年   6篇
  2021年   8篇
  2020年   3篇
  2019年   6篇
  2018年   5篇
  2017年   4篇
  2016年   2篇
  2015年   3篇
  2014年   5篇
  2013年   4篇
  2012年   5篇
  2011年   5篇
  2010年   1篇
  2009年   3篇
  2008年   4篇
  2007年   6篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
  1995年   2篇
排序方式: 共有79条查询结果,搜索用时 15 毫秒
1.
In this paper, the problem of stochastic stability for a class of time-delay Hopfield neural networks with Markovian jump parameters is investigated. The jumping parameters are modeled as a continuous-time, discrete-state Markov process. Without assuming the boundedness, monotonicity and differentiability of the activation functions, some results for delay-dependent stochastic stability criteria for the Markovian jumping Hopfield neural networks (MJDHNNs) with time-delay are developed. We establish that the sufficient conditions can be essentially solved in terms of linear matrix inequalities.  相似文献   
2.
Post injection has significant benefit in the reduction of diesel soot emissions. Therefore, there is a need to understand the effect of post-injection strategy on soot physicochemical properties and reactivity because they play an important role in soot oxidation process that governs the final soot emissions. This work focuses on the impact of post injection on the physicochemical properties and reactivity of diesel in-cylinder soot using a main plus post injection (M*P) and a single injection (M) strategy. The soot was sampled by a developed total cylinder sampling system, and the dividing points of soot formation-dominant and oxidation-dominant phases were used for studying the impacts of post injection on the characteristics of in-cylinder soot. The physicochemical properties of the soot samples, including primary particle size, nanostructure, carbon chemical state and surface functional groups, were characterized. The soot reactivity was evaluated in terms of peak temperature, burnout temperature and apparent activation energy. In the oxidation-dominant phase, the M*P soot initially possesses smaller primary particle size, shorter fringe length, larger tortuosity, lower sp2/sp3 hybridization ratio of carbon atoms and higher content of aliphatic CH groups than the M soot. The beneficial influence of physicochemical properties on soot reactivity when using post injection is validated by the thermogravimetric data, which shows that the M*P soot is more reactive than the M soot at the onset of the oxidation-dominant phase. In the M*P case, the soot generated from the main-injection combustion has lower reactivity than the soot from the post-injection combustion after they experience the soot formation-dominant phase. The results indicate that the use of post injection leads to in-cylinder soot with physicochemical properties that favor reactivity. The enhancement of reactivity means that the soot will be more readily oxidized in the subsequent combustion process, and consequently contributes to a reduction in final soot emissions.  相似文献   
3.
Antler growth depends on the proliferation and differentiation of mesenchymal stem cells (MSCs), and this process may be adversely affected by oxidative stress. Melatonin (MLT) has antioxidant functions, but its role in Cervidae remains largely unknown. In this article, flow cytometry, reactive oxygen species (ROS) identification, qPCR, and other methods were used to investigate the protective mechanism of MLT in H2O2-induced oxidative stress of antler MSCs. The results showed that MLT significantly increases cell viability by relieving the oxidative stress of antler MSCs. MLT inhibits cell apoptosis by protecting mitochondrial function. We blocked the melatonin receptor with luzindole (Luz) and found that the receptor blockade significantly increases H2O2-induced hyperoxide levels and causes significant inhibition of mitochondrial function. MLT treatment activates the nuclear factor E2-related factor 2 (Nrf2) antioxidant signaling pathway, up-regulates the expression of NAD(P)H quinone oxidoreductase 1 (NQO1) and other genes and it could inhibit apoptosis. In contrast, the melatonin receptor blockade down-regulates the expression of Nrf2 pathway-related genes, but significantly up-regulates the expression of apoptotic genes. It was indicated that MLT activates the Nrf2 pathway through the melatonin receptor and alleviates H2O2-induced oxidative stress and apoptosis in antler MSCs. This study provides a theoretical basis for further studying the oxidative stress and antioxidant process of antler MSCs and, thereby, increasing antler yields.  相似文献   
4.
利用~1H NMR、紫外吸收光谱和荧光光谱等方法考察了七元瓜环(Q[7])对2'-羟基查尔酮(CET)的包结作用.结果表明,Q[7]与CET形成了摩尔比为1∶1的包结配合物,紫外吸收光谱和荧光光谱测得的结合稳定常数分别为1.0248×10~6和1.253×10~6.相溶解度法研究结果表明,当Q[7]的浓度为1×10~(-3)mol/L时,可使CET在水中的溶解度增加52倍.紫外吸收光谱随时间变化的研究结果表明,Q[7]使CET的稳定性增加3.5倍.采用体外抗氧化活性测定(ABTS法)考察了Q[7]对CET抗氧化活性的影响,发现CET@Q[7]包结配合物以及游离CET均对ABTS自由基有较好的清除作用.IC50值分别为3.4×10~(-5)和2.4×10~(-5)mol/L,表明Q[7]不仅能增加CET的溶解性和稳定性,同时对CET抗氧化活性的影响不大.  相似文献   
5.
For neural networks with all the parameters unknown, we focus on the global robust synchronization between two coupled neural networks with time-varying delay that are linearly and unidirectionally coupled. First, we use Lyapunov functionals to establish general theoretical conditions for designing the coupling matrix. Neither symmetry nor negative (positive) definiteness of the coupling matrix are required; under less restrictive conditions, the two coupled chaotic neural networks can achieve global robust synchronization regardless of their initial states. Second, by employing the invariance principle of functional differential equations, a simple, analytical, and rigorous adaptive feedback scheme is proposed for the robust synchronization of almost all kinds of coupled neural networks with time-varying delay based on the parameter identification of uncertain delayed neural networks. Finally, numerical simulations validate the effectiveness and feasibility of the proposed technique.  相似文献   
6.
The reactions of magnesium and calcium bis(hexamethyldisilazide) with propiophenone have been studied with a view to determine the utility of these bases in the stereoselective enolization of ketones and to uncover the nature of the metal enolate intermediates produced. Both base systems are highly Z-selective when the reactions are conducted in the presence of polar solvents. However, in situ monitoring of the magnesium system in arene solution revealed a preference for E-enolate formation, which was confirmed by silyl enol ether trapping studies. Solution NMR studies of the magnesium system in toluene-d8 show the presence of a monomer-dimer equilibrium for the intermediate amidomagnesium enolates. This assignment is supported by the characterization of a disolvated amidomagnesium enolate dimer by crystallographic analysis. Comparative studies of the calcium system show distinctly different behavior. This is exemplified by the characterization of a novel solvent-separated ion pair complex and a monomeric amidocalcium enolate in the solid state. Solution NMR studies of the calcium system in pyridine-d5 reveal the co-existence of the heteroleptic amidocalcium enolate, the bisamide, the bisenolate and the ion pair complex.  相似文献   
7.
Reductive amination of aldehydes/ketones with aqueous NH3 and hydrogenation of nitriles to primary amines with Co catalysts were reported. Co@NC-700 exhibited remarkable activity and high selectivity for the reductive amination of aldehydes/ketones with aqueous NH3 and the hydrogenation of nitriles to primary amines. Several primary amines can be obtained with good to excellent yields via the reductive amination of aldehydes/ketones and the hydrogenation of nitriles. The nitrogen-doped carbon(C)-supported Co@NC-700 metal catalyst was prepared via the pyrolysis of bioMOF Co/adenine in activated C. Co@NC-700 can be reused five times without evident loss of activity.  相似文献   
8.
Endometritis is the inflammatory response of the endometrial lining of the uterus and is associated with low conception rates, early embryonic mortality, and prolonged inter-calving intervals, and thus poses huge economic losses to the dairy industry worldwide. Ginsenoside Rb1 (GnRb1) is a natural compound obtained from the roots of Panax ginseng, having several pharmacological and biological properties. However, the anti-inflammatory properties of GnRb1 in lipopolysaccharide (LPS)-challenged endometritis through the TLR4-mediated NF-κB signaling pathway has not yet been researched. This study was planned to evaluate the mechanisms of how GnRb1 rescues LPS-induced endometritis. In the present research, histopathological findings revealed that GnRb1 ameliorated LPS-triggered uterine injury. The ELISA and RT-qPCR assay findings indicated that GnRb1 suppressed the expression level of pro-inflammatory molecules (TNF-α, IL-1β and IL-6) and boosted the level of anti-inflammatory (IL-10) cytokine. Furthermore, the molecular study suggested that GnRb1 attenuated TLR4-mediated NF-κB signaling. The results demonstrated the therapeutic efficacy of GnRb1 in the mouse model of LPS-triggered endometritis via the inhibition of the TLR4-associated NF-κB pathway. Taken together, this study provides a baseline for the protective effect of GnRb1 to treat endometritis in both humans and animals.  相似文献   
9.
A new fluorescent sensor, 4-allylamine-N-(N-salicylidene)-1,8-naphthalimide (1), anchoring a naphthalimide moiety as fluorophore and a Schiff base group as receptor, was synthesized and characterized. The photophysical properties of sensor 1 were conducted in organic solvents of different polarities. Our study revealed that, depending on the solvent polarity, the fluorescence quantum yields varied from 0.59 to 0.89. The fluorescent activity of the sensor was monitored and the sensor was consequently applied for the detection of Cu2+ with high selectivity over various metal ions by fluorescence quenching in Tris-HCl (pH = 7.2) buffer/DMF (1:1, v/v) solution. From the binding stoichiometry, it was indicated that a 1:1 complex was formed between Cu2+ and the sensor 1. The fluorescence intensity was linear with Cu2+ in the concentration range 0.5–5 μM. Moreso, the detection limit was calculated to be 0.32 μM, which is sufficiently low for good sensitivity of Cu2+ ion. The binding mode was due to the intramolecular charge transfer (ICT) and the coordination of Cu2+ with C = N and hydroxyl oxygen groups of the sensor 1. The sensor proved effective for Cu2+ monitoring in real water samples with recovery rates of 95–112.6 % obtained.  相似文献   
10.
Magnesium bis(hexamethyldisilazide), Mg(HMDS)(2), reacts with substoichiometric amounts of propiophenone in toluene solution at ambient temperature to form a 74:26 mixture of the enolates (E)- and (Z)-[(HMDS)(2)Mg(2)(mu-HMDS){mu-OC(Ph)=CHCH(3)}], (E)-1 and (Z)-1, which contain a pair of three-coordinate metal centers bridged by an amide and an enolate group. The compositions of (E)-1 and (Z)-1 were confirmed by solution NMR studies and also by crystallographic characterization in the solid state. Rate studies using UV-vis spectroscopy reveal the rapid and complete formation of a reaction intermediate, 2, between the ketone and magnesium, which undergoes first-order decay with rate constants independent of the concentration of excess Mg(HMDS)(2) (DeltaH++ = 17.2 +/- 0.8 kcal/mol, DeltaS++ = -11 +/- 3 cal/mol.K). The intermediate 2 has been characterized by low-temperature (1)H NMR, diffusion-ordered NMR, and IR spectroscopy and investigated by computational studies, all of which are consistent with the formulation of 2 as a three-coordinate monomer, (HMDS)(2)Mg{eta(1)-O=C(Ph)CH(2)CH(3)}. Further support for this structure is provided by the synthesis and structural characterization of two model ketone complexes, (HMDS)(2)Mg(eta(1)-O=C(t)Bu(2)) (3) and (HMDS)(2)Mg{eta(1)-O=C((t)Bu)Ph} (4). A large primary deuterium isotope effect (k(H)/k(D) = 18.9 at 295 K) indicates that proton transfer is the rate-limiting step of the reaction. The isotope effect displays a strong temperature dependence, indicative of tunneling. In combination, these data support the mechanism of enolization proceeding through the single intermediate 2 via intramolecular proton transfer from the alpha carbon of the bound ketone to the nitrogen of a bound hexamethyldisilazide.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号