首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
化学   11篇
物理学   2篇
  2013年   1篇
  2012年   3篇
  2010年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1994年   2篇
  1987年   1篇
  1983年   2篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
2.
The constitution of the ternary system Ni/Si/Ti is investigated over the entire composition range using X‐ray diffraction (XRD), energy dispersive X‐ray spectroscopy (EDS), differential thermal analysis (DTA), and metallography. The solid state phase equilibria are determined for 900 °C. Eight ternary phases are found to be stable. The crystal structures for the phases τ1NiSiTi, τ2Ni4Si7Ti4, τ3Ni40Si31Ti13, τ4Ni17Si7Ti6, and τ5Ni3SiTi2 are corroborated. For the remaining phases the compositions are determined as Ni6Si41Ti536), Ni16Si42Ti427), and Ni12Si45Ti438). The reaction scheme linking the solid state equilibria with the liquidus surface is amended to account for these newly observed phases. The discrepancies between previous experimental conclusions and modeling results are addressed. The liquidus surface is dominated by the primary crystallisation field of τ1NiSiTi, the only congruently melting phase.  相似文献   
3.
The new [2 + 2] Schiff-base macrocyclic ligand L2, containing pyridazine head units and pyridine pendant arms, was synthesised as [Ba(II)2L2(ClO4)4(OH2)] 1 from the barium(II) ion templated condensation reaction of 3,6-diformylpyridazine and N1-(2-aminoethyl)-N1-(methylene-2-pyridyl)-ethane-1,2-diamine. Subsequent transmetallation reactions of 1 with copper(II), iron(II) and manganese(II) perchlorates led to the formation of [Cu(II)2L2](ClO4)4.2MeCN 2, [Fe(II)2L2(MeCN)2](ClO4)4 3 and two manganese complexes, 4 and 5, with the same formula, [Mn(II)2L2(MeCN)(OH2)](ClO4)4, but slightly different crystal structures, respectively. Single-crystal X-ray structural analyses reveal the variety of structures which can be supported by L2 in order to meet the coordination environment preferences of the incorporated metal ions. The barium(II) ions in 1 have an irregular ten-coordinate geometry whereas the copper(II) ions in 2 have a square pyramidal geometry and the iron(II) ions in 3 have an octahedral geometry, while in 4 and 5 every manganese(II) ion is seven-coordinate and the environment can be best described as distorted pentagonal bipyramidal. In 1, 4 and 5 the pyridazine moieties bridge the metal centres [Ba(1)...Ba(2) 4.9557(3)A 1; Mn(1)...Mn(2) 4.520(1)A 4; Mn(1)[dot dot dot]Mn(2) 4.3707(8)A 5] but this is not observed in the copper(II) and iron(II) complexes, 2 and 3, in which the metal ions are well separated [Cu(1)...Cu(2) 5.9378(6)A 2; Fe(1)...Fe(2) 5.7407(12)A 3]. In the cyclic voltammogram of [Cu2(II)L2](ClO4)4.2MeCN 2 in MeCN vs. Ag/AgCl two separate reversible one-electron transfer steps are observed [E(1/2)=0.04 V, DeltaE= 0.12 V and E(1/2)= 0.20 V, DeltaE=0.12 V; K(c)=510; in this system E(1/2)(Fc+/Fc)=0.42 V and DeltaE(Fc+/Fc)=0.08 V]. The other complexes cannot be reversibly reduced/oxidised.  相似文献   
4.
Leithe-Jasper  A.  Weitzer  F.  Rogl  P.  Qi  Qinian  Coey  J. M. D. 《Hyperfine Interactions》1994,94(1):2327-2332
The ternary stannide series of RMnSn2 compounds crystallize in the defect orthorhombic CeNiSi2-type structure. They order magnetically close to room temperature. Isomer shifts are approximately 1.9 and 2.8 mm/s at the two tin sites, and there are transferred hyperfine fields of 3–6 T at 15 K, which depend on the rare-earth partner, especially at Sn2 sites. The magnitude of the transferred hyperfine field per manganese neighbour is 4T.  相似文献   
5.
6.
At low temperatures, the mononuclear copper(I) complex of the tetradentate tripodal aliphatic amine Me(6)tren (Me(6)tren = tris(2-dimethylaminoethyl)amine) [Cu(I)(Me(6)tren)(RCN)](+) first reversibly binds dioxygen to form a 1:1 Cu-O(2) species which further reacts reversibly with a second [Cu(I)(Me(6)tren)(RCN)](+) ion to form the dinuclear 2:1 Cu(2)O(2) adduct. The reaction can be observed using low temperature stopped-flow techniques. The copper superoxo complex as well as the peroxo complex were characterized by resonance Raman spectroscopy. The spectral characteristics and full kinetic and thermodynamic results for the reaction of [Cu(I)(Me(6)tren)(RCN)](+) with dioxygen are reported.  相似文献   
7.
The synthesis and a joint experimental and theoretical study of the crystal structure and physical properties of the new ternary intermetallic compound TiGePt are presented. Upon heating, TiGePt exhibits an unusual structural phase transition with a huge volume contraction of about 10?%. The transformation is characterized by a strong change in the physical properties, in particular, by an insulator-metal transition. At temperatures below 885?°C TiGePt crystallizes in the cubic MgAgAs (half-Heusler) type (LT phase, space group F43m, a = 5.9349(2)??). At elevated temperatures, the crystal structure of TiGePt transforms into the TiNiSi structure type (HT phase, space group Pnma, a = 6.38134(9)??, b = 3.89081(5)??, c = 7.5034(1)??). The reversible, temperature-dependent structural transition was investigated by in-situ neutron powder diffraction and dilatometry measurements. The insulator-metal transition, indicated by resistivity measurements, is in accord with band structure calculations yielding a gap of about 0.9?eV for the LT phase and a metallic HT phase. Detailed analysis of the chemical bonding in both modifications revealed an essential change of the Ti-Pt and Ti-Ge interactions as the origin of the dramatic changes in the physical properties.  相似文献   
8.
9.
Compounds with the composition R6Fe13X (R=Pr, Nd; X=In, Sn, Tl, Pb, Cu, Ag, Au) were studied by57Fe Mössbauer spectroscopy. Attention was focused on the influence of the easy axis of the magnetization on the shape of the hyperfine patterns. The spectra are composed of at least four subpatterns, originating from the different Fe lattice sites. Contrary to the magnetization, a significant dependence of the hyperfine parameters on the specific elements R and X could not be detected. Predominantly, the easy axis of the magnetization was found to lie within the basal plane; only for R=Nd and X=In, Sn, Tl, Pb is an easyc-axis present. Since the low temperature magnetization data obtained for the different compounds show a wide spread, while the57Fe hyperfine fields remain almost constant over the whole series, some kind of antiferromagnetic ordering within the Fe sublattice is anticipated.  相似文献   
10.
The synthesis and a joint experimental and theoretical study of the crystal structure and physical properties of the new ternary intermetallic compound TiGePt are presented. Upon heating, TiGePt exhibits an unusual structural phase transition with a huge volume contraction of about 10 %. The transformation is characterized by a strong change in the physical properties, in particular, by an insulator–metal transition. At temperatures below 885 °C TiGePt crystallizes in the cubic MgAgAs (half‐Heusler) type (LT phase, space group F$\bar 4$ 3m, a=5.9349(2) Å). At elevated temperatures, the crystal structure of TiGePt transforms into the TiNiSi structure type (HT phase, space group Pnma, a=6.38134(9) Å, b=3.89081(5) Å, c=7.5034(1) Å). The reversible, temperature‐dependent structural transition was investigated by in‐situ neutron powder diffraction and dilatometry measurements. The insulator–metal transition, indicated by resistivity measurements, is in accord with band structure calculations yielding a gap of about 0.9 eV for the LT phase and a metallic HT phase. Detailed analysis of the chemical bonding in both modifications revealed an essential change of the Ti–Pt and Ti–Ge interactions as the origin of the dramatic changes in the physical properties.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号