首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
物理学   7篇
  2014年   1篇
  2011年   1篇
  2007年   1篇
  2005年   1篇
  2002年   2篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
Cheng CY  Wu CM  Liao GB  Cheng WY 《Optics letters》2007,32(5):563-565
A cesium 6S(1/2) --> 8S(1/2) two-photon-transition (TPT)-stabilized 822.5 nm diode laser is reported for the first time to our knowledge. Allan deviation of 4.4 x 10(-13) (60 s) was achieved, and the possible systematic errors were evaluated as smaller than 2 kHz. We demonstrate that the cesium TPT-stabilized diode laser could be a reliable frequency reference at 822.5 nm wavelength.  相似文献   
2.
3.
A dual-comb laser system containing two femtosecond Ti:sapphire (Ti:S) lasers is reported, in which the ultrashort pulses are pumped by one common fiber laser and the influences of the different pumping noise are presented both in time-domain and frequency-domain. In addition, the dimensions of dual Ti:S comb system are reduced due to the implementation of one hand-sized optical frequency reference, from which the needed space and cost for two “self-reference” optics are saved.  相似文献   
4.
The iodine molecule has frequently been used as a frequency reference from the green to the near-infrared wavelength region (500-900 nm). We describe the frequency locking of the second-harmonic signal of a 197.2-THz (1520.25-nm) distributed-feedback diode laser to the absorption lines of the iodine hyperfine structure; a frequency jitter below 0.1 MHz was achieved at a 300-ms time constant. This scheme provides a simple, compact, and high-performance frequency reference in the optical communication band.  相似文献   
5.
In this paper we report our investigations on the frequency stabilization and frequency measurements of 543 nm HeNe laser. It contains following four different works. (1) Using a metal laser tube we have built an iodine-stabilized 543 nm HeNe laser by the Frequency-Modulation (FM) spectroscopy. The signal-to-noise ratio of the hyperfine spectrum reached 2 × 10–12 at 1 s sampling time. (2) We have built a compact iodine-stabilized 543 nm HeNe laser system using the third-harmonic locking technique. Stability better than 1 × 10–12 for sampling time >1 s is obtained. We also suggest the b10 line for the future recommendation. (3) We constructed the Lamb-dip stabilized He-20Ne and He-22Ne lasers and measured their frequency stability, reproducibility, and absolute frequencies. The results suggest that the Lamb-dip stabilized lasers are appropriate for secondary wavelength standards. We have also deduced the isotope shift of Ne atom at 543 nm. (4) We have developed two two-mode stabilized 543 nm HeNe lasers using the bang-bang control method. The Allan variance is 1 × 10–11 at 1 s sampling time.  相似文献   
6.
Cheng WY  Chen L  Yoon TH  Hall JL  Ye J 《Optics letters》2002,27(8):571-573
A widely tunable and high-resolution spectrometer based on a frequency-doubled Ti:sapphire laser was used to explore sub-Doppler transitions of iodine molecules in the wavelength range 523-498 nm. The wavelength dependence of the hyperfine transition linewidth of iodine was mapped out in this region, and the narrowest linewidth was ~4 kHz near 508 nm. The hyperfine-resolved patterns were found to be largely modified toward the dissociation limit. The observed excellent signal-to-noise ratio should lead to high-quality optical frequency standards that are better than those of the popular 532-nm system.  相似文献   
7.
Chen YH  Liu TW  Wu CM  Lee CC  Lee CK  Cheng WY 《Optics letters》2011,36(1):76-78
This Letter presents an intracavity scheme for diode laser based two-photon spectroscopy. To demonstrate generality, three (133)Cs hyperfine transition groups of different wavelengths are shown. For the 6S-6D transitions, we achieved a 10(2) times better signal-to-noise ratio than in previous work [J. Phys. Soc. Jpn. 74, 2487 (2005)] with 10(-3) times less laser power, revealing some previously vague and unobserved spectra. Possible mutual influences between the two-photon absorber and laser cavity were investigated for the first time to our knowledge, which leads to the application of a reliable hand-sized optical frequency reference. Our approach is applicable for most of the two-photon spectroscopy of alkali atoms.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号