首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
化学   1篇
力学   1篇
数学   1篇
物理学   13篇
  2015年   1篇
  2013年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2006年   3篇
  2002年   1篇
  1997年   1篇
  1995年   2篇
  1992年   3篇
排序方式: 共有16条查询结果,搜索用时 0 毫秒
1.
2.
The development of a compact tunable mid-IR laser system at 3.5 μm for quantitative airborne spectroscopic trace gas absorption measurements is reported. The mid-IR laser system is based on difference frequency generation (DFG) in periodically poled LiNbO3 and utilizes optical fiber amplified near-IR diode and fiber lasers as pump sources operating at 1083 nm and 1562 nm, respectively. This paper describes the optical sensor architecture, performance characteristics of individual pump lasers and DFG, as well as its application to wavelength modulation spectroscopy employing an astigmatic Herriott multi-pass gas absorption cell. This compact system permits detection of formaldehyde with a minimal detectable concentration (1σ replicate precision) of 74 parts-per-trillion by volume (pptv) for 1 min of averaging time and was achieved using calibrated gas standards, zero air background and rapid dual-beam subtraction. This corresponds to a pathlength-normalized replicate fractional absorption sensitivity of 2.5×10-10 cm-1. Received: 29 April 2002 / Published online: 21 August 2002 RID="*" ID="*"Corresponding author. Fax: +1-303/497-1492, E-mail: dr@ucar.edu  相似文献   
3.
Tunable infrared laser-based instruments on airborne platforms have provided invaluable contributions to atmospheric studies over the past several decades. This paper presents an overview of some recent studies and developments using this approach that were presented at the 2007 Field Laser Applications in Industry and Research (FLAIR, http://www.inoa.it/flair/) conference in Florence, Italy. The present overview only covers select in situ absorption-based instruments that were presented in the airborne session at this conference. In no case are comprehensive details presented. These details can be found in the numerous references given. Additional approaches based upon cavity-enhanced and photoacoustic measurements, which are also making invaluable contributions in airborne atmospheric studies, are not discussed in this brief overview. PACS  07.88.+y; 07.57.Ty; 42.60.-v; 42.60.By; 42.62.Fi  相似文献   
4.
5.
6.
The development and spectroscopic performance evaluation of an ultra-sensitive, mid-IR spectrometer is reported. The laser system is based upon difference-frequency generation (DFG) at ~3.5 μm by mixing a DFB diode laser at 1562 nm and a DFB fiber laser at 1083 nm using a periodically poled LiNbO3 crystal. DFG radiation was coupled to a 100?m optical path length astigmatic Herriott cell. Sensitive and selective spectroscopic detection of formaldehyde was performed with second-harmonic detection using Peltier-cooled HgCdTe detectors. By applying computer lock-ins, dual-beam optical noise subtraction, focus matching, thermal stabilization, active wavelength control, and advanced signal processing a sensitivity corresponding to an absorbance ~1.6×10-7 is achieved for 260 s of averaging.  相似文献   
7.
In this paper we introduce a two-sided Arnoldi method for the reduction of high order linear systems and we propose useful extensions, first of all a stopping criterion to find a suitable order for the reduced model and secondly, a selection procedure to significantly improve the performance in the multi-input multi-output (MIMO) case. One application is in micro-electro-mechanical systems (MEMS). We consider a thermo-electric micro thruster model, and a comparison between the commonly used Arnoldi algorithm and the two-sided Arnoldi is performed.  相似文献   
8.
9.
10.
This is the report of Heavy Ion Physics and Quark-Gluon Plasma at WHEPP-09 which was part of Working Group-4. Discussion and work on some aspects of quark-gluon plasma believed to have created in heavy-ion collisions and in early Universe are reported.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号