首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   1篇
数学   1篇
物理学   4篇
  2014年   2篇
  2010年   1篇
  1994年   1篇
  1993年   2篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
The Boron Neutron Capture Therapy (BNCT) is based on selective uptake of boron in tumour tissue compared to the surrounding normal tissue. Infusion of compounds with boron is followed by irradiation with neutrons. Neutron capture on 10B, which gives rise to an alpha particle and recoiled 7Li ion, enables the therapeutic dose to be delivered to tumour tissue while healthy tissue can be spared. Here, therapeutic abilities of BNCT were studied for possible treatment of liver cancer using thermal and epithermal neutron beam. For neutron transport MCNP software was used and doses in organs of interest in ORNL phantom were evaluated. Phantom organs were filled with voxels in order to obtain depth-dose distributions in them. The result suggests that BNCT using an epithermal neutron beam could be applied for liver cancer treatment.  相似文献   
3.
The problem of reducing the bandwidth of a matrix consists of finding a permutation of rows and columns of a given matrix which keeps the non-zero elements in a band as close as possible to the main diagonal. This NP-complete problem can also be formulated as a vertex labelling problem on a graph, where each edge represents a non-zero element of the matrix. We propose a variable neighbourhood search based heuristic for reducing the bandwidth of a matrix which successfully combines several recent ideas from the literature. Empirical results for an often used collection of 113 benchmark instances indicate that the proposed heuristic compares favourably to all previous methods. Moreover, with our approach, we improve best solutions in 50% of instances of large benchmark tests.  相似文献   
4.
The use of beta radionuclides for treatment in radiotherapies leads for a need of better understanding of interactions and local energy depositions of beta particles within tissue and tissue equivalent media. The aim of this work is to determine microdosimetric quantities for various radionuclides. Specific energy, z, and its distribution, $ f(z) $ , mean specific energy, $ \bar{z} $ , and its standard deviations, $ \sigma \left( {\bar{z}_{f} } \right) $ , were evaluated for typical single cell where nucleus is the cellular region of interest. Three possible positions of radionuclides were taken into account—cellular membrane, cytoplasm and nucleoplasm. Taking these regions as the source of radiation, microdosimetric quantities were calculated for beta emitting radionuclides: 191Os, 199Au, 177Lu, 67Cu, 77As, 131I, 186Re, 32P, 188Re and 90Y. It was found that low range beta emitters have the largest efficiency and can deliver radiation doses up to 1 mGy per decay. Determination of the specific energy and its distribution for radionuclides is a useful start in order to determine beta emitters for a particular radionuclide therapy.  相似文献   
5.
6.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号