首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   92篇
  免费   2篇
化学   62篇
数学   7篇
物理学   25篇
  2021年   1篇
  2020年   2篇
  2018年   2篇
  2015年   1篇
  2014年   1篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   11篇
  2009年   8篇
  2008年   9篇
  2007年   3篇
  2006年   3篇
  2005年   2篇
  2004年   7篇
  2002年   5篇
  2001年   4篇
  2000年   3篇
  1998年   2篇
  1996年   2篇
  1995年   1篇
  1993年   2篇
  1992年   1篇
  1990年   1篇
  1982年   1篇
  1972年   1篇
  1969年   2篇
  1904年   1篇
  1890年   1篇
排序方式: 共有94条查询结果,搜索用时 15 毫秒
1.
The NMR and infrared spectra of a series of carboxylic acids of carbonyl fluoride telomers, CF3O(CF2O)nCF2COOH (with n = 1 through 7) are described and tentative assignments for the main vibrational modes proposed.  相似文献   
2.
A molecular-level abacus-like system driven by light inputs has been designed in the form of a [2]rotaxane, comprising the pi-electron-donating macrocyclic polyether bis-p-phenylene-34-crown-10 (BPP34C10) and a dumbbell-shaped component that contains 1) a Ru(II) polypyridine complex as one of its stoppers in the form of a photoactive unit, 2) a p-terphenyl-type ring system as a rigid spacer, 3) a 4,4'-bipyridinium unit and a 3,3'-dimethyl-4,4'-bipyridinium unit as pi-electron-accepting stations, and 4) a tetraarylmethane group as the second stopper. The synthesis of the [2]rotaxane was accomplished in four successive stages. First of all, the dumbbell-shaped component of the [2]rotaxane was constructed by using conventional synthetic methodology to make 1) the so-called "west-side" comprised of the Ru(II) polypyridine complex linked by a bismethylene spacer to the p-terphenyl-type ring system terminated by a benzylic bromomethyl function and 2) the so-called "east-side" comprised of the tetraarylmethane group, attached by a polyether linkage to the bipyridinium unit, itself joined in turn by a trismethylene spacer to an incipient 3,3'-dimethyl-4,4'-bipyridinium unit. Next, 3) the "west-side" and "east-side" were fused together by means of an alkylation to give the dumbbell-shaped compound, which was 4) finally subjected to a thermodynamically driven slippage reaction, with BPP34C10 as the ring, to afford the [2]rotaxane. The structure of this interlocked molecular compound was characterized by mass spectrometry and NMR spectroscopy, which also established, along with cyclic voltammetry, the co-conformational behavior of the molecular shuttle. The stable translational isomer is the one in which the BPP34C10 component encircles the 4,4'-bipyridinium unit, in keeping with the fact that this station is a better pi-electron acceptor than the other station. This observation raises the question- can the BPP34C10 macrocycle be made to shuttle between the two stations by a sequence of photoinduced electron transfer processes? In order to find an answer to this question, the electrochemical, photophysical, and photochemical (under continuous and pulsed excitation) properties of the [2]rotaxane, its dumbbell-shaped component, and some model compounds containing electro- and photoactive units have been investigated. In an attempt to obtain the photoinduced abacus-like movement of the BPP34C10 macrocycle between the two stations, two strategies have been employed-one was based fully on processes that involved only the rotaxane components (intramolecular mechanism), while the other one required the help of external reactants (sacrificial mechanism). Both mechanisms imply a sequence of four steps (destabilization of the stable translational isomer, macrocyclic ring displacement, electronic reset, and nuclear reset) that have to compete with energy-wasteful steps. The results have demonstrated that photochemically driven switching can be performed successfully by the sacrificial mechanism, whereas, in the case of the intramolecular mechanism, it would appear that the electronic reset of the system is faster than the ring displacement.  相似文献   
3.
Aliphatic amines, incorporating one or three (branched) acylated beta-D-glucopyranosyl residues, were coupled with the acid chloride of ferrocenecarboxylic acid and with the diacid chloride of 1,1'-ferrocenedicarboxylic acid to afford four dendrimer-type, carbohydrate-coated ferrocene derivatives in good yields (54-92%). Deprotection of the peracylated beta-D-glucopyranosyl residues was achieved quantitatively by using Zemplén conditions, affording four water-soluble ferrocene derivatives. When only one of the two cyclopentadienyl rings of the ferrocene unit is substituted, strong complexes are formed with beta-cyclodextrin in H2O, as demonstrated by liquid secondary ion mass spectrometry (LSIMS), 1H NMR spectroscopy, electrochemical measurements, and circular dichroism spectroscopy. Molecular dynamics calculations showed that the unsubstituted cyclopentadienyl ring is inserted through the cavity of the toroidal host in these complexes. The electrochemical behavior of the protected and deprotected ferrocene-containing dendrimers was investigated in acetonitrile and water, respectively. The diffusion coefficient decreases with increasing molecular weight of the compound. The potential for oxidation of the ferrocene core, the rate constant of heterogeneous electron transfer, and the rate constant for the energy-transfer reaction with the luminescent excited state of the [Ru(bpy)3]2+ complex (bpy = 2,2'-bipyridine) are strongly affected by the number (one or two) of substituents and by the number (one or three) of carbohydrate branches present in the substituents. These effects are assigned to shielding of the ferrocene core by the dendritic branches. Electrochemical evidence for the existence of different conformers for one of the dendrimers in aqueous solution was obtained.  相似文献   
4.
A study of absorption spectra in the near-infrared (NIR) and visible (vis) regions of trinuclear Ru complexes containing pyrazine (pyz) as bridging ligand, trans-[(Ru(NH(3))(5)pyz)(2)Ru(NH(3))(4)](m+)(m = 6-9), is reported. The spectra were recorded on aqueous solutions containing the described species formed in situ by stoichiometric additions of a standard solution of Ce(SO(4))(2). They were interpreted in terms of a simple 5-orbital-3-parameter model which includes the effects of d-pi interaction and electronic correlation. The model is shown to account for the observed NIR-vis spectra of the complex ions. The 6+ parent species was synthesized by an improved literature method and fully characterized. The novel 8+ complex was also prepared and characterized. The 9+ ion was established to be slowly reduced by water, with dioxygen formation. Electrochemical (CV and DPV) studies were performed on the trinuclear 6+ complex, as well as on its constituent fragments [Ru(NH(3))(5)(pyz)](2+) and trans-[Ru(NH(3))(4)(pyz)(2)](2+).  相似文献   
5.
In pursuit of a neutral bistable [2]rotaxane made up of two tetraarylmethane stoppers--both carrying one isopropyl and two tert-butyl groups located at the para positions on each of three of the four aryl rings--known to permit the slippage of the pi-electron-donating 1,5-dinaphtho[38]crown-10 (1/5DNP38C10) at the thermodynamic instigation of pi-electron-accepting recognition sites, in this case, pyromellitic diimide (PmI) and 1,4,5,8-naphthalenetetracarboxylate diimide (NpI) units separated from each other along the rod section of the rotaxane's dumbbell component, and from the para positions of the fourth aryl group of the two stoppers by pentamethylene chains, a modular approach was employed in the synthesis of the dumbbell-shaped compound NpPmD, as well as of its two degenerate counterparts, one (PmPmD) which contains two PmI units and the other (NpNpD) which contains two NpI units. The bistable [2]rotaxane NpPmR, as well as its two degenerate analogues PmPmR and NpNpR, were obtained from the corresponding dumbbell-shaped compounds NpPmD, PmPmD, and NpNpD and 1/5DNP38C10 by slippage. Dynamic 1H NMR spectroscopy in CD2Cl2 revealed that shuttling of the 1/5DNP38C10 ring occurs in NpNpR and PmPmR, with activation barriers of 277 K of 14.0 and 10.9 kcal mol(-1), respectively, reflecting a much more pronounced donor-acceptor stabilizing interaction involving the NpI units over the PmI ones. The photophysical and electrochemical properties of the three neutral [2]rotaxanes and their dumbbell-shaped precursors have also been investigated in CH2Cl2. Interactions between 1/5DNP38C10 and PmI and NpI units located within the rod section of the dumbbell components of the [2]rotaxane give rise to the appearance of charge-transfer bands, the energies of which correlate with the electron-accepting properties of the two diimide moieties. Comparison between the positions of the visible absorption bands in the three [2]rotaxanes shows that, in NpPmR, the major translational isomer is the one in which 1/5DNP38C10 encircles the NpI unit. Correlations of the reduction potentials for all the compounds studied confirm that, in this non-degenerate [2]rotaxane, one of the translational isomers predominates. Furthermore, after deactivation of the NpI unit by one-electron reduction, the 1/5DNP38C10 macrocycle moves to the PmI unit. Li+ ions have been found to strengthen the interaction between the electron-donating crown ether and the electron-accepting diimide units, particularly the PmI one. Titration experiments show that two Li+ ions are involved in the strengthening of the donor-acceptor interaction. Addition of Li+ ions to NpPmR induces the 1/5DNP38C10 macrocycle to move from the NpI to the PmI unit. The Li+-ion-promoted switching of NpPmR in a 4:1 mixture of CD2Cl2 and CD3COCD3 has also been shown by 1H NMR spectroscopy to involve the mechanical movement of the 1/5DNP38C10 macrocycle from the NpI to the PmI unit, a process that can be reversed by adding an excess of [12]crown-4 to sequester the Li+ ions.  相似文献   
6.
We have examined the 19F NMR spectra of a number of oxygen-containing fluorocarbon products and obtained a comprehensive set of 19F chemical shift values, which enabled us to determine the influence of an oxygen atom bonded to a fluorocarbon group on the 19F chemical shift. The influence of neighbouring fluorocarbon groups, either directly connected or separated by an oxygen atom, was also considered. Our results may be summarized as follows. An oxygen atom bonded by a single bond (ether type bond) to a fluorine substituted carbon atom decreases the 19F chemical shift, as does the introduction of a further fluorine atom. Considering two adjacent fluorocarbon groups, a variation of x ppm in the 19F chemical shift of one of the two groups gives a variation of 0·12 x ppm in the opposite sense on the 19F chemical shift of the other group. If the two groups are connected by an ether oxygen atom, the effect is only about 0·06 x ppm.  相似文献   
7.
The tetrahedral, shape‐persistent molecule 1 4+, containing four pyridylpyridinium units connected through a central carbon atom, exhibits unexpected photophysical properties including a substantially redshifted absorption (2350 cm?1) and a very strong fluorescence (Φem=40 %), compared with the monomer 2 + (Φem=0.4 %). Density functional theory calculations on the structure and spectroscopic properties of 1 4+ and 2 + show that exciton interactions, homoconjugation, and orbital nature account for the observed differences in their photophysical properties. The protonated tetramer binds four cucurbit[7]uril molecules and the host/guest interactions can be controlled by chemical (acid/base) as well as redox stimuli.  相似文献   
8.
In the past ten years a great variety of artificial molecular machines have been constructed, and very interesting concepts for controlling molecular‐level movements by external inputs have been developed. Most of the studies, however, have been performed in solution, where the investigated systems contain a huge number of molecules which behave independently from one another because they cannot be addressed individually. Before such systems can find applications in many fields of technology, they must be interfaced with the macroscopic world by ordering them in some way so that they can behave coherently and can be addressed in space. The problem of obtaining ordered arrays of molecular machines can be addressed by a variety of techniques, which include deposition on surfaces, incorporation into polymers, organization at interfaces, and immobilization in membranes or porous materials. In the last few years, the development of scanning‐probe techniques has also enabled direct observation and manipulation of single molecular‐machine molecules on surfaces. Techniques of this kind have opened novel routes to the study of molecular machines, and have also contributed to better understanding the differences between movement at the macroscopic and molecular levels. This paper reviews some recent achievements in the field of molecular machines working on surfaces and at interfaces, as single molecules or ordered arrays. Hybrid natural–artificial machines are also discussed, and the working mechanism of some natural machines is illustrated for the purpose of comparison.  相似文献   
9.
We present a general approach for nonlinear biorthogonal decomposition of random fields. The mathematical theory is developed based on a fully symmetric operator framework that unifies different types of expansions and allows for a simple formulation of necessary and sufficient conditions for their completeness. The key idea of the method relies on an equivalence between nonlinear mappings of Hilbert spaces and local inner products, i.e. inner products that may be functionals of the random field being decomposed. This extends previous work on the subject and allows for an effective formulation of field-dependent and field-independent representations. The proposed new methodology can be applied in many areas of mathematical physics, for stochastic low-dimensional modelling of partial differential equations and dimensionality reduction of complex nonlinear phenomena. An application to a transient stochastic heat conduction problem in a one-dimensional infinite medium is presented and discussed.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号