首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   0篇
化学   2篇
力学   1篇
物理学   7篇
  2020年   1篇
  2011年   3篇
  2005年   1篇
  2004年   3篇
  2002年   1篇
  2000年   1篇
排序方式: 共有10条查询结果,搜索用时 15 毫秒
1
1.
The K-shell X-ray fluorescence cross sections are determined experimentally for 10 elements such as Pb, Hg, Ir, W, Lu, Tm, Dy, Tb, Gd and Nd at excitation energy of 661.6 keV associated with γ-rays of 137Cs radioisotope. The technique employed involves the measurement of total intensity of fluorescent K X-rays that follow the photoeffect absorption of a known flux of γ-rays using a well type Nal(Tl) detector. The obtained results are compared with the available theoretical values and other measured values.  相似文献   
2.
Spectral estimation based on acoustic backscatter from a motionless stochastic medium is described for characterization of aberration in ultrasonic imaging. The underlying assumptions for the estimation are: The correlation length of the medium is short compared to the length of the transmitted acoustic pulse, an isoplanatic region of sufficient size exists around the focal point, and the backscatter can be modeled as an ergodic stochastic process. The motivation for this work is ultrasonic imaging with aberration correction. Measurements were performed using a two-dimensional array system with 80 x 80 transducer elements and an element pitch of 0.6 mm. The f number for the measurements was 1.2 and the center frequency was 3.0 MHz with a 53% bandwidth. Relative phase of aberration was extracted from estimated cross spectra using a robust least-mean-square-error method based on an orthogonal expansion of the phase differences of neighboring wave forms as a function of frequency. Estimates of cross-spectrum phase from measurements of random scattering through a tissue-mimicking aberrator have confidence bands approximately +/- 5 degrees wide. Both phase and magnitude are in good agreement with a reference characterization obtained from a point scatterer.  相似文献   
3.
The reference scan method is a simple yet powerful method for measuring spatial drift of the x-ray spot during a low-cone-angle μ-CT experiment. As long as the drift is smooth, and occurring on a time scale that is long compared to the acquisition time of each projection, this method provides a way to compensate for the drift by applying 2D in-plane translations to the radiographs. Here we show that this compensation may be extended to the regime of high-magnification, high-cone-angle CT experiments where source drift perpendicular to the detector plane can cause significant magnification changes throughout the acquisition.  相似文献   
4.
Triphilic star-polyphiles are short-chain oligomeric molecules with a radial arrangement of hydrophilic, hydrocarbon and fluorocarbon chains linked to a common centre. They form a number of liquid crystalline structures when mixed with water. In this contribution we focus on a hexagonal liquid crystalline mesophase found in star-polyphiles as compared to the corresponding double-chain surfactant to determine whether the hydrocarbon and fluorocarbon chains are in fact demixed in these star-polyphile systems, or whether both hydrocarbon and fluorocarbon chains are miscible, leading to a single hydrophobic domain, making the star-polyphile effectively amphiphilic. We report SANS contrast variation data that are compatible only with the presence of three distinct immiscible domains within this hexagonal mesophase, confirming that these star-polyphile liquid crystals are indeed hydrophilic/oleophilic/fluorophilic 3-phase systems. Quantitative comparison with scattering simulations shows that the experimental data are in very good agreement with an underlying 2D columnar (12.6.4) tiling. As in a conventional amphiphilic hexagonal mesophase, the hexagonally packed water channels (dodecagonal prismatic domains) are embedded in a hydrophobic matrix, but that matrix is split into oleophilic hexagonal prismatic domains and fluorophilic quadrangular prismatic domains.  相似文献   
5.
Simulations of iterative transmit-beam aberration correction using a time-delay and amplitude filter have been performed to study the convergence of such a process. Aberration in medical ultrasonic imaging is usually modeled by arrival-time and amplitude fluctuations concentrated on the transducer array. This is an approximation of the physical aberration process, and may be applied to correct the transmitted signal using a time-delay and amplitude filter. Estimation of such a filter has proven difficult in the presence of severe aberration. Presented here is an iterative approach, whereby a filter estimate is applied to correct the transmit-beam. This beam induces acoustic backscatter better suited for arrival-time and amplitude estimation, thus facilitating an improved filter estimate. Two correlation-based methods for estimating arrival-time and amplitude fluctuations in received echoes from random scatterers were employed. Aberration was introduced using eight models emulating aberration produced by the human abdominal wall. Results show that only a few iterations are needed to obtain corrected transmit-beam profiles comparable to those of an ideal aberration correction filter. Furthermore, a previously developed focusing criterion is found to quantify the convergence accurately.  相似文献   
6.
Presented here is a characterization of aberration in medical ultrasound imaging. The characterization is optimal in the sense of maximizing the expected energy in a modified beamformer output of the received acoustic backscatter. Aberration correction based on this characterization takes the form of an aberration correction filter. The situation considered is frequently found in applications when imaging organs through a body wall: aberration is introduced in a layer close to the transducer, and acoustic backscatter from a scattering region behind the body wall is measured at the transducer surface. The scattering region consists of scatterers randomly distributed with very short correlation length compared to the acoustic wavelength of the transmit pulse. The scatterer distribution is therefore assumed to be delta correlated. This paper shows how maximizing the expected energy in a modified beamformer output signal naturally leads to eigenfunctions of a Fredholm integral operator, where the associated kernel function is a spatial correlation function of the received stochastic signal. Aberration characterization and aberration correction are presented for simulated data constructed to mimic aberration introduced by the abdominal wall. The results compare well with what is obtainable using data from a simulated point source.  相似文献   
7.
A method for estimating waveform aberration from random scatterers in medical ultrasound imaging has been derived and its properties investigated using two-dimensional simulations. The method uses a weighted and modified cross-spectrum in order to estimate arrival time and amplitude fluctuations from received signals. The arrival time and amplitude fluctuations were used in a time delay, and a time delay and amplitude aberration correction filter, for evaluation of the retransmitted aberration corrected signal. Different types of aberration have been used in this study. First, aberration was concentrated on the plane of the transmitting/receiving array. Second, aberration was generated with a distributed aberrator. Both conditions emulated aberration from the human abdominal wall. Results show that for the concentrated aberrator, arrival time and amplitude fluctuations were estimated in close agreement with reference values. The reference values were obtained from simulations with a point source in the focal point of the array. Correction of the transmitted signal with a time delay, and a time delay and amplitude filter produced approximately equal correction as with point source estimates. For the distributed aberrator, the estimator performance degraded significantly. Arrival time and amplitude fluctuations deviated from reference values, leading to a limited correction of the retransmitted signal.  相似文献   
8.
In vitro produced bovine embryos were frozen by pellet freezing or vitrification method. In the pellet freezing method, the embryos were cooled on the dry ice and then frozen as pellets. At warming, the pellets were immersed directly into 0.5 M sucrose. The survival rates of blastocysts frozen by the pellet freezing method were higher (P<0.01) in 40% ethylene glycol (EG) than those in the lower concentrations (20 and 30% EG). Higher survival rates of blastocysts frozen by the pellet freezing method were obtained but the development rates did not differ, as compared with those by the vitrification method. There were no significant differences between the pellet freezing and vitrification method in the frequencies of post-thaw survival of hatched blastocysts. These results demonstrate that the pellet freezing method using dry ice can be used successfully for the cryopreservation of blastocysts.  相似文献   
9.
We report that a specific realization of Schwarz's triply periodic hexagonal minimal surface is isotropic with respect to the Doi-Ohta interface tensor and simultaneously has minimal packing and stretching frustration similar to those of the commonly found cubic bicontinuous mesophases. This hexagonal surface, of symmetry P6(3)/mmc with a lattice ratio of c/a = 0.832, is therefore a likely candidate geometry for self-assembled lipid/surfactant or copolymer mesophases. Furthermore, both the peak position ratios in its powder diffraction pattern and the elastic moduli closely resemble those of the cubic bicontinuous phases. We therefore argue that a genuine possibility of experimental misidentification exists.  相似文献   
10.
Digital images of porous media often include features approaching the image resolution length scale. The behavior of numerical methods at low resolution is therefore important even for well-resolved systems. We study the behavior of the Shan-Chen (SC) and Rothman-Keller (RK) multicomponent lattice-Boltzmann models in situations where the fluid-fluid interfacial radius of curvature and/or the feature size of the medium approaches the discrete unit size of the computational grid. Various simple, small-scale test geometries are considered, and a drainage test is also performed in a Bentheimer sandstone sample. We find that both RK and SC models show very high ultimate limits: in ideal conditions the models can simulate static fluid configuration with acceptable accuracy in tubes as small as three lattice units across for RK model (six lattice units for SC model) and with an interfacial radius of curvature of two lattice units for RK and SC models. However, the stability of the models is affected when operating in these extreme discrete limits: in certain circumstances the models exhibit behaviors ranging from loss of accuracy to numerical instability. We discuss the circumstances where these behaviors occur and the ramifications for larger-scale fluid displacement simulations in porous media, along with strategies to mitigate the most severe effects. Overall we find that the RK model, with modern enhancements, exhibits fewer instabilities and is more suitable for systems of low fluid-fluid miscibility. The shortcomings of the SC model seem to arise predominantly from the high, strongly pressure-dependent miscibility of the two fluid components.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号