首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
力学   1篇
物理学   2篇
  2014年   2篇
  2013年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
The effect of size of a cooling laser beam in a zig-zag atomic beam collimator on transverse cooling of a krypton atomic beam is investigated. The simulation results show that discreteness in the interaction between the cooling laser beam and atomic beam, arising due to finite size and incidence angle of the cooling laser beam, significantly reduces the value of transverse velocity capture range of the collimator. The experimental observations show the trend similar to that obtained from simulations. Our study can be particularly useful where a small zig-zag collimator is required.  相似文献   
2.
The success of carbon capture and storage (CCS) programme relies on the long-term isolation of CO2 from the atmosphere. Therefore, technologies concomitant to physical storage of CO2 such as reliable measurement, monitoring, and verification (MMV) techniques are needed to ensure that the integrity of the storage site is maintained. We propose the use of laser-induced breakdown spectroscopy (LIBS) analytical technique to detect carbon dioxide leaks to aid in the successful application of CCS. LIBS has a real-time monitoring capability and can be reliably used for the elemental and isotopic analysis of solid, liquid, and gas samples. The flexibility of probe design and use of fibre optics make it a suitable technique for real time measurements in harsh conditions and at hard-to-reach places. Proposed monitoring with LIBS includes terrestrial soil samples, water samples from monitoring wells or from different formations, air samples from monitoring wells or suspected leakage areas. This work details the laboratory scale experiments to measure carbon contents in rock, soil, aqueous, and air samples. The potential of the technology for measurements in high pressure high-temperature conditions will also be discussed.  相似文献   
3.
This paper presents a new approach to the solution of nonsymmetric linear systems that uses hybrid techniques based on both direct and iterative methods. An implicitly preconditioned modified system is obtained by applying projections onto block rows of the original system. Our technique provides the flexibility of using either direct or iterative methods for the solution of the preconditioned system. The resulting algorithms are robust, and can be implemented with high efficiency on a variety of parallel architectures. The algorithms are used to solve linear systems arising from the discretization of convection-diffusion equations as well as those systems that arise from the simulation of particulate flows. Experiments are presented to illustrate the robustness and parallel efficiency of these methods.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号