首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   1篇
力学   4篇
物理学   5篇
  2010年   1篇
  2008年   2篇
  2007年   1篇
  2003年   1篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The linear stability of planar solitary waves with respect to long-wavelength transverse perturbations is studied in the framework of the generalized Kadomtsev-Petviashvili equation. It is newly discovered that for some nonlinearities in this family, the solitary waves could be transversely unstable even in a medium with negative dispersion. In the case of positive dispersion, they are found to be always unstable.  相似文献   
2.
An immiscible liquid–liquid multiphase flow in a cross‐junction microchannel was numerically studied using the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by introducing surface tension force based on the continuum surface force (CSF) method. Recoloring step was replaced by the anti‐diffusion scheme in the mixed region to reduce the side‐effect and control the thickness of the interface. The present method was tested by the simulation of a static bubble. Laplace's law and spurious velocities were examined. The results show that our model is more advantageous for simulations of immiscible fluids than the existing immiscible lattice BGK models. Computational results of multiphase flow in a cross‐junction microchannel were obtained and analyzed based on dimensionless numbers. It is found that the flow pattern is decided mostly by the capillary number at a small inlet flux. However, at the same capillary number, a large inlet flux will lead to much smaller droplet generation. For this case, the flow is determined by both the capillary number and the Weber number. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
3.
In this article, a discrete effect in the thermal Lattice BGK two-speed model is studied. These effects are due to the non-equilibrium state in the particle distribution function, and the non-equilibrium occurs near walls. The mechanism of the LBM counterpart of the thermal creep flow, which appears due to the temperature gradient of the boundary in rarefied gases, is clarified analytically and numerical calculations are performed for some cases. A technique for eliminating this effect is also shown.  相似文献   
4.
A lattice Boltzmann equation model has been developed by using the equilibrium distribution function of the Maxwell-Boltzmann-like form, which is third order in fluid velocity uα. The criteria of energy conservation between the macroscopic physical quantities and the microscopic particles are introduced into the model, thus the thermal hydrodynamic equations containing the effect of buoyancy force can be recovered in terms of the Taylor and Chapman-Enskog asymptotic expansion methods. The two-dimensional thermal convection phenomena in a square cavity and between two concentric cylinders have been calculated by implementing a heat flux boundary condition. Both numerical results are in good agreement with the conventional numerical results.  相似文献   
5.
A two‐dimensional 19‐velocity (D2Q19) lattice Boltzmann model which satisfies the conservation laws governing the macroscopic and microscopic mass, momentum and energy with local equilibrium distribution order O(u4) rather than the usual O(u3) has been developed. This model is applied to simulate the reflection of shockwaves on the surface of a triangular obstacle. Good qualitative agreement between the numerical predictions and experimental measurements is obtained. As the model contains the higher‐order terms in the local equilibrium distribution, it performs much better in terms of numerical accuracy and stability than the earlier 13‐velocity models with the local equilibrium distribution accurate only up to the second order in the velocity u. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   
6.
In present paper, a novel immersed boundary-thermal lattice Boltzmann method by the name of “an equilibrium internal energy density approach” is proposed to simulate the flows around bluff bodies with the heat transfer. The main idea is to combine the immersed boundary method (IBM) with the thermal lattice Boltzmann method (TLBM) based on the double population approach. The equilibrium internal energy density approach based on the equilibrium velocity approach [X. Shan, H. Chen, Lattice Boltzmann model for simulating flows with multiple phases and components, Phys. Rev. E 47 (1993) 1815] is used to combine IBM with TLBM. The idea of the equilibrium internal energy density approach is that the satisfaction of the energy balance between heat source on the immersed boundary point and the amount of change of the internal energy density according to time ensures the temperature boundary condition on the immersed boundary. The advantages of this approach are the simple concept, easy implementation and the utilization of original governing equation without modification. The simulation of natural convection in a square cavity with various body shapes for different Rayleigh numbers has been conducted to validate the capability and the accuracy of present method on solving heat transfer problems. Consequently, the present results are found to be in good agreement with those of previous studies.  相似文献   
7.
This paper presents a novel approach to simulate aerodynamically generated sounds by modifying the finite difference‐based lattice BGK compressible fluid model for the purpose of speeding up the calculation and also stabilizing the numerical scheme. With the model, aerodynamic sounds generated by a uniform flow around a two‐dimensional circular cylinder at Re = 150 are simulated. The third‐order‐accurate up‐wind scheme is used for the spatial derivatives, and the second‐order‐accurate Runge–Kutta method is applied for the time marching. The results show that we successively capture very small acoustic pressure fluctuations, with the same frequency of the Karman vortex street, much smaller than the whole pressure fluctuation around a circular cylinder. The propagation velocity of the acoustic waves shows that the points of peak pressure are biased upstream owing to the Doppler effect in the uniform flow. For the downstream, on the other hand, it is faster. It is also apparent that the amplitude of sound pressure is proportional to r?1/2, r being the distance from the centre of the circular cylinder. Moreover, the edgetone generated by a two‐dimensional jet impinging on a wedge to predict the frequency characteristics of the discrete oscillations of a jet‐edge feedback cycle is investigated. The jet is chosen long enough to guarantee the parabolic velocity profile of the jet at the outlet, and the edge is of an angle of α = 23°. At a stand‐off distance w, the edge is inserted along the centreline of the jet, and a sinuous instability wave with real frequency is assumed to be created in the vicinity of the nozzle exit and to propagate towards the downstream. We have succeeded in capturing small pressure fluctuations resulting from periodic oscillation of jet around the edge. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   
8.
We derive a fully nonlinear evolution equation that can describe the two-dimensional motion of finite-amplitude long internal waves in a uniformly stratified three-dimensional fluid of finite depth. The derived equation is the two-dimensional counterpart of the evolution equation obtained by Grimshaw and Yi [J. Fluid Mech. 229, 603 (1991)]. In the small-amplitude limit, our equation is reduced to the celebrated Kadomtsev-Petviashvili equation.  相似文献   
9.
An immiscible liquid–liquid multiphase flow in a cross-junction microchannel was numerically studied by the lattice Boltzmann method. An improved, immiscible lattice BGK model was proposed by introducing interfacial tension force based on the continuum surface force (CSF) method. The recoloring step was replaced by the anti-diffusion scheme in the mixed region to reduce the side-effect and control the thickness of the interface. The present method was tested by the simulations on a static bubble and the simulations of Taylor deformation. Laplace’s law, spurious velocities, the thickness of interface, the pressure distribution and the small deformation theory were examined. It proves that our model is more advantageous for the simulation of immiscible fluids over the original immiscible lattice BGK model. The simulations of droplet formation in a cross-junction microchannel were performed and compared with the experiments. The numerical results show good agreements with the experimental ones for the evolution of droplet and the droplet size at various inlet velocities. Besides, a dimensionless analysis was carried out. The resulting droplet sizes depend on the Capillary number to a great extent under current conditions.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号