首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
化学   2篇
物理学   4篇
  2013年   1篇
  2011年   2篇
  2010年   1篇
  2004年   2篇
排序方式: 共有6条查询结果,搜索用时 0 毫秒
1
1.
The most straightforward method to analyze an obtained GC–MS dataset is to integrate those peaks that can be identified by their MS profile and to perform a Principal Component Analysis (PCA). This procedure has some important drawbacks, like baseline drifts being scarcely considered or the fact that integration boundaries are not always well defined (long tails, co-eluted peaks, etc.). To improve the methodology, and therefore, the chromatographic data analysis, this work proposes the modeling of the raw dataset by using PARAFAC2 algorithm in selected areas of the GC profile and using the obtained well-resolved chromatographic profiles to develop a further PCA model. With this working method, not only the problems arising from instrumental artifacts are overcome, but also the detection of new analytes is achieved as well as better understanding of the studied dataset is obtained. As a positive consequence of using the proposed working method human time and work are saved. To exemplify this methodology the aroma profile of 36 apples being ripened were studied. The benefits of the proposed methodology (PARAFAC2 + PCA) are shown in a practitioner perspective, being able to extrapolate the conclusions obtained here to other hyphenated chromatographic datasets.  相似文献   
2.
The established protocol for the cryopreservation of winter-dormant Malus buds requires that stem explants, containing a single, dormant bud are desiccated at -4 degree C, for up to 14 days, to reduce their water content to 25-30 percent of fresh weight. Using three apple cultivars, with known differences in response to cryopreservation, the pattern of evaporative water loss has been characterised, including early freezing events in the bud and cortical tissues that allow further desiccation by water migration to extracellular ice. There were no significant differences between cultivars in this respect or in the proportions of tissue water lost during the desiccation process. Differential Scanning Calorimetry (to -90 degree C) of intact buds indicated that bud tissues of the cultivar with the poorest response to cryopreservation had the highest residual water content at the end of the desiccation process and froze at the highest temperature.  相似文献   
3.
4.
The widely-adopted protocol for the cryopreservation of winter buds of fruit trees, such as Malus and Pyrus, was developed in a region with a continental climate, that provides relatively hard winters with a consequent effect on adaptive plant hardiness. In this study the protocol was evaluated in a typical maritime climate (eastern Denmark) where milder winters can be expected. The survival over two winters was evaluated, looking at variation between seasons and cultivars together with the progressive reduction in survival due to individual steps in the protocol. The study confirms that under such conditions significant variation in survival can be expected and that an extended period of imposed dehydration at -4 degree C is critical for bud survival. The occurrence of freezing events during this treatment suggests that cryodehydration may be involved, as well as evaporative water loss. To optimize the protocol for maritime environments, further investigation into the water status of the explants during cryopreservation is proposed.  相似文献   
5.
TB 《Physik in unserer Zeit》2004,35(5):209-209
  相似文献   
6.
Nickel, cobalt, copper and platinum nanoparticles supported on carbon nano-fibers were evaluated with respect to their stability, catalytic activity and selectivity in the aqueous phase reforming of ethylene glycol (230 C, autogenous pressure, batch reactor). The initial surface-specific activities for ethylene glycol reforming were in a similar range but decreased in the order of Pt (15.5 h1 ) >Co(13.0 h1 ) >Ni(5.2 h1 ) while the Cu catalyst only showed low dehydrogenation activity. The hydrogen molar selectivity decreased in the order of Pt (53%)>Co(21%)>Ni (15%) as a result of the production of methane over the latter two catalysts. Over the Co catalyst acids were formed in the liquid phase while alcohols were formed over Ni and Pt. Due to the low pH of the reaction mixture, especially in the case of Co (as a result of the formed acids), significant cobalt leaching occurs which resulted in a rapid deactivation of this catalyst. Investigations of the spent catalysts with various techniques showed that metal particle growth is responsible for the deactivation of the Pt and Ni catalysts. In addition, coking might also contribute to the deactivation of the Ni catalyst.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号