首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10篇
  免费   1篇
化学   9篇
物理学   2篇
  2017年   1篇
  2013年   1篇
  2008年   1篇
  2006年   2篇
  2005年   4篇
  2003年   1篇
  1992年   1篇
排序方式: 共有11条查询结果,搜索用时 62 毫秒
1.
Transient absorption spectrometry of Cu(I)-phenanthrolines in CH2Cl2 reveals ligand-independent dynamic processes lasting 15 ps, which are associated with the peculiar structural rearrangements occurring for this class of compounds upon photoexcitation.  相似文献   
2.
A series of cationic Ir(III) complexes with the general formula (C/N)2Ir(N/N)(+)PF6- featuring bis-cyclometalated 1-phenylpyrazolyl-N,C2' (C/N) and neutral diimine (N/N, e.g., 2,2'-bipyridyl) ligands were synthesized and their electrochemical, photophysical, and electroluminescent properties studied. Density functional theory calculations indicate that the highest occupied molecular orbital of the compounds is comprised of a mixture of Ir d and phenylpyrazolyl-based orbitals, while the lowest unoccupied molecular orbital has predominantly diimine character. The oxidation and reduction potentials of the complexes can be independently varied by systematic modification of either the C/N or N/N ligands with donor or acceptor substituents. The electrochemical redox gaps (E(ox)-E(red)) were adjusted to span a range between 2.39 and 3.08 V. All of the compounds have intense absorption bands in the UV region assigned to 1(pi-pi*) transitions and weaker charge-transfer (CT) transitions that extend to the visible region. The complexes display intense luminescence both in fluid solution and as neat solids at 298 K that is assigned to emission from a triplet metal-ligand-to-ligand CT (3MLLCT) excited state. The energy of the 3MLLCT state varies in nearly direct proportion to the size of the electrochemical redox gap, which leads to emission colors that vary from red to blue. Three of the (C/N)2Ir(N/N)(+)PF6- complexes were used as active materials in single-layer light-emitting electrochemical cells (LECs). Single-layer electroluminescent devices were fabricated by spin-coating the Ir complexes onto an ITO-PEDOT/PSS substrate followed by deposition of aluminum contacts onto the organic film. Devices were prepared that give blue, green, and red electroluminescence spectra (lambda(max) = 492, 542, and 635 nm, respectively), which are nearly identical with the photoluminescence spectra of thin films of the same materials. The single-layer LECs give peak external quantum efficiencies of 4.7, 6.9, and 7.4% for the blue, green, and red emissive devices, respectively.  相似文献   
3.
The temporally overlapping, ultrafast electronic and vibrational dynamics of a model five-coordinate, high-spin heme in a nominally isotropic solvent environment has been studied for the first time with three complementary ultrafast techniques: transient absorption, time-resolved resonance Raman Stokes, and time-resolved resonance Raman anti-Stokes spectroscopies. Vibrational dynamics associated with an evolving ground-state species dominate the observations. Excitation into the blue side of the Soret band led to very rapid S2 --> S1 decay (sub-100 fs), followed by somewhat slower (800 fs) S1 --> S0 nonradiative decay. The initial vibrationally excited, non-Boltzmann S0 state was modeled as shifted to lower energy by 300 cm(-1) and broadened by 20%. On a approximately 10 ps time scale, the S0 state evolved into its room-temperature, thermal distribution S0 profile largely through VER. Anti-Stokes signals disappear very rapidly, indicating that the vibrational energy redistributes internally in about 1-3 ps from the initial accepting modes associated with S1 --> S0 internal conversion to the rest of the macrocycle. Comparisons of anti-Stokes mode intensities and lifetimes from TRARRS studies in which the initial excited state was prepared by ligand photolysis [Mizutani, T.; Kitagawa, T. Science 1997, 278, 443, and Chem. Rec. 2001, 1, 258] suggest that, while transient absorption studies appear to be relatively insensitive to initial preparation of the electronic excited state, the subsequent vibrational dynamics are not. Direct, time-resolved evaluation of vibrational lifetimes provides insight into fast internal conversion in hemes and the pathways of subsequent vibrational energy flow in the ground state. The overall similarity of the model heme electronic dynamics to those of biological systems may be a sign that the protein's influence upon the dynamics of the heme active site is rather subtle.  相似文献   
4.
The possibility that chemical reactions may be controlled by tailored femtosecond laser pulses has inspired recent studies that take advantage of their short pulse duration, comparable to intramolecular dynamics, and high peak intensity to fragment and ionize molecules. In this article, we present an experimental quest to control the chemical reactions that take place when isolated molecules interact with shaped near-infrared laser pulses with peak intensities ranging from 1013 to 1016 W/cm2. Through the exhaustive evaluation of hundreds of thousands of experiments, we methodically evaluated the molecular response of 16 compounds, including isomers, to the tailored light fields, as monitored by time-of-flight mass spectrometry. Analysis of the experimental data, taking into account its statistical significance, leads us to uncover important trends regarding the interaction of isolated molecules with an intense laser field. Despite the energetics involved in fragmentation and ionization, the integrated second-harmonic generation of a given laser pulse (ISHG), which was recorded as an independent diagnostic parameter, was found to be linearly proportional to the total ion yield (IMS) generated by that pulse in all of our pulse shaping measurements. Order of magnitude laser control over the relative yields of different fragment ions was observed for most of the molecules studied; the fragmentation yields were found to vary monotonically with IMS and/or ISHG. When the extensive changes in fragmentation yields as a function of IMS were compared for different phase functions, we found essentially identical results. This observation implies that fragmentation depends on a parameter that is responsible for IMS and independent from the particular time-frequency structure of the shaped laser pulse. With additional experiments, we found that individual ion yields depend only on the average pulse duration, implying that coherence does not play a role in the observed changes in yield as a function of pulse shaping. These findings were consistently observed for all molecules studied (p-, m-, o-nitrotoluene, 2,4-dinitrotoluene, benzene, toluene, naphthalene, azulene, acetone, acetyl chloride, acetophenone, p-chrolobenzonitrile, N,N-dimethylformamide, dimethyl phosphate, 2-chloroethyl ethyl sulfide, and tricarbonyl-[eta5-1-methyl-2,4-cyclopentadien-1-yl]-manganese). The exception to our conclusion is that the yield of small singly-charged fragments resulting from a multiple ionization process in a subset of molecules, were found to be highly sensitive to the phase structure of the intense pulses. This coherent process plays a minimal role in photofragmentation; therefore, we consider it an exception rather than a rule. Changes in the fragmentation process are dependent on molecular structure, as evidenced in a number of isomers, therefore femtosecond laser fragmentation could provide a practical dimension to analytical chemistry techniques.  相似文献   
5.
Reported herein is a combination of experimental and DFT/TDDFT theoretical investigations of the ground and excited states of 1,4,8,11,15,18,22,25-Octabutoxyphthalocyaninato-nickel(II), NiPc(BuO)(8), and the dynamics of its deactivation after excitation into the S(1)(pi,pi) state in toluene solution. According to X-ray crystallographic analysis NiPc(BuO)(8) has a highly saddled structure in the solid state. However, DFT studies suggest that in solution the complex is likely to flap from one D(2)(d)-saddled conformation to the opposite one through a D(4)(h)-planar structure. The spectral and kinetic changes for the complex in toluene are understood in terms of the 730 nm excitation light generating a primarily excited S(1) (pi,pi) state that transforms initially into a vibrationally hot (3)(d(z)2,d(x)2(-)(y)2) state. Cooling to the zeroth state is complete after ca. 8 ps. The cold (d,d) state converted to its daughter state, the (3)LMCT (pi,d(x)2(-)(y)2), which itself decays to the ground state with a lifetime of 640 ps. The proposed deactivation mechanism applies to the D(2)(d)-saddled and the D(4)(h)-planar structure as well. The results presented here for NiPc(BuO)(8) suggest that in nickel phthalocyanines the (1,3)LMCT (pi,d(x)2(-)(y)2) states may provide effective routes for radiationless deactivation of the (1,3)(pi,pi) states.  相似文献   
6.
Two approaches are reported to achieve efficient blue to near-UV emission from triscyclometalated iridium(III) materials related to the previously reported complex, fac-Ir(ppz)(3) (ppz = 1-phenylpyrazolyl-N,C(2)'). The first involves replacement of the phenyl group of the ppz ligand with a 9,9-dimethyl-2-fluorenyl group, i.e., fac-tris(1-[(9,9-dimethyl-2-fluorenyl)]pyrazolyl-N,C(2)')iridium(III), abbreviated as fac-Ir(flz)(3). Crystallographic analysis reveals that both fac-Ir(flz)(3) and fac-Ir(ppz)(3) have a similar coordination environment around the Ir center. The absorption and emission spectra of fac-Ir(flz)(3) are red shifted from those of fac-Ir(ppz)(3). The fac-Ir(flz)(3) complex gives blue photoluminescence (PL) with a high efficiency (lambda(max) = 480 nm, phi(PL) = 0.38) at room temperature. The lifetime and quantum efficiency were used to determine the radiative and nonradiative rates (1.0 x 10(4) and 2.0 x 10(4) s(-1), respectively). The second approach utilizes N-heterocyclic carbene (NHC) ligands to form triscyclometalated Ir complexes. Complexes with two different NHC ligands, i.e., iridium tris(1-phenyl-3-methylimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmi)(3), and iridium tris(1-phenyl-3-methylbenzimidazolin-2-ylidene-C,C(2)'), abbreviated as Ir(pmb)(3), were both isolated as facial and meridianal isomers. Comparison of the crystallographic structures of the fac- and mer-isomers of Ir(pmb)(3) with the corresponding Ir(ppz)(3) isomers indicates that the imidazolyl-carbene ligand has a stronger trans influence than pyrazolyl and, thus, imparts a greater ligand field strength. Both fac-Ir(pmi)(3) and fac-Ir(pmb)(3) complexes display strong metal-to-ligand-charge-transfer absorption transitions in the UV (lambda = 270-350 nm) and phosphoresce in the near-UV region (E(0)(-)(0) = 380 nm) at room temperature with phi(PL) values of 0.02 and 0.04, respectively. The radiative decay rates for fac-Ir(pmi)(3) and fac-Ir(pmb)(3) (5 x 10(4) s(-1) and 18 x 10(4) s(-1), respectively) are somewhat higher than that of fac-Ir(flz)(3), but the nonradiative rates are two orders of magnitude faster (i.e., (2-4) x 10(6) s(-1)).  相似文献   
7.
8.
A series of squaraine‐based sensitizers with various π bridges and anchors were prepared and examined in dye‐sensitized solar cells. The carboxylic anchor group was attached onto a squaraine dye through π bridges with and without an ethynyl spacer. DFT studies indicate that the LUMO is delocalized throughout the dyes, whilst the HOMO resides on the squaraine core. The dye that incorporates a 4,4‐di‐n‐hexyl‐cyclopentadithiophene group that is directly attached onto the π bridge, JD10 , exhibits the highest power conversion efficiency in a DSC; this result is attributed, in part, to the deaggregative properties that are associated with the gem‐di‐n‐hexyl substituents, which extend above and below the π‐conjugated dye plane. Dye JD10 demonstrates a power‐conversion efficiency of 7.3 % for liquid‐electrolyte dye‐sensitized solar cells and 7.9 % for cells that are co‐sensitized by another metal‐free dye, D35 , which substantially exceed the performance of any previously tested squaraine sensitizer. A panchromatic incident‐photon‐to‐current‐conversion efficiency curve is realized for this dye with an excellent short‐circuit current of 18.0 mA cm?2. This current is higher than that seen for other squaraine dyes, partially owing to a high molar absorptivity of >5 000 M ?1 cm?1 from 400 nm to the long‐wavelength onset of 724 nm for dye JD10 .  相似文献   
9.
10.
para-Nitroaniline (PNA) plays an essential role as the prototype model of push-pull chromophores. The nature and degree of participation of vibrational degrees of freedom in the charge-transfer and internal-conversion processes are current issues of great theoretical and practical importance. Ultrafast time-resolved anti-Stokes resonance Raman spectroscopy (TRARRS) experiments on PNA in dimethyl sulfoxide with three different excitation wavelengths were performed to probe these dynamical influences. The vibrational dynamics associated with S0 were independent of incident wavelength, and this supports the picture that the S1 dynamics are fast relative to the rate of intersystem crossing. The phenyl breathing mode nu(19) (860 cm(-1)) and the symmetric NO2 stretch nu(29) (1310 cm(-1)) exhibited vibrational lifetimes in S0 of 8.1 and 5.2 ps, respectively. No evidence for inhomogeneous broadening of the charge-transfer band in the UV/Vis absorption spectrum was found.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号