首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   59篇
  免费   1篇
化学   35篇
力学   1篇
数学   12篇
物理学   12篇
  2017年   4篇
  2015年   1篇
  2013年   3篇
  2012年   9篇
  2011年   18篇
  2010年   7篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   4篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1998年   1篇
  1997年   1篇
排序方式: 共有60条查询结果,搜索用时 15 毫秒
1.
We identify a class of instances of the Koopmans–Beckmann form of the Quadratic Assignment Problem that are solvable in polynomial time. This class is characterized by a path structure in the flow data and a grid structure in the distance data. Chr18b, one of the test problems in the QAPLIB, is in this class even though this feature of it has not been noticed until now.  相似文献   
2.
A ring R has right SIP (SSP) if the intersection (sum) of two direct summands of R is also a direct summand. We show that the right SIP (SSP) is the Morita invariant property. We also prove that the trivial extension of R by M has SIP if and only if R has SIP and (1 – e)Me = 0 for every idempotent e in R. Moreover, we give necessary and sufficient conditions for the generalized upper triangular matrix rings to have SIP.  相似文献   
3.
This research effort studies the use of redundant induction coil gauges to reduce state estimation uncertainties for moving Lagrangian points (LPs); e.g. discrete points, moving interfaces, projectiles, etc. The technique embeds a small, high-strength magnet at the LP and simultaneously tracks the magnet continuously with five (5) or more induction coils along a single axis of motion. A calibrated coil gauge model is presented as a function of LP position and velocity. The optimized LP state (position and velocity) estimate based upon redundant LP observations allows direct solution for LP velocity; requiring only one differentiation step to obtain acceleration. A specific experimental implementation (Particulate Materials Meso-scale Diagnostics system) is simulated to evaluate and minimize the expected state estimation errors. Induction coil signals with various levels of noise are simulated based upon a prescribed LP state variation with time. The state optimization algorithm attempts to recover the truth state values. Worst-case position estimation errors of ±0.3 mm and velocity estimation errors of ±0.46 m/s are determined for LPs travelling 0–1,000 m/s at realistic in-lab data noise levels.  相似文献   
4.

Thin film CdIn2Te4/CdS solar cells were deposited onto the ITO-coated glass substrate by electron beam evaporation (e-beam) technique, and the the effect of annealing on their structural properties is studied. The annealing was performed under nitrogen atmosphere for 1 h. The manufactured solar cells were studied by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersive X-ray (EDAX) analysis. Crystallite size (D), inter-planer distance (d) and lattice constant (a) values were calculated for the thin film solar cell from XRD data. Annealed samples display well defined XRD patterns with three diffraction peaks. We observed increased peak intensity in the annealed films. EDAX analysis showed that only CdIn2Te4 is present in absorber layer and CdS is found in the window layer, but no impurity atoms are present the structure. It is observed that surface roughness of the annealed films incresed, according to SEM images. The I–V characteristics show that the current is increased for annealed thin films solar cells.

  相似文献   
5.
Our previous work postulated a transition concept among different isotopic mass states (i.e., isotopic species) of a molecule, and developed a hierarchical algorithm for accurately calculating their masses and abundances. A theoretical mass spectrum can be generated by convoluting a peak shape function to these discrete mass states. This approach suffers from limited memory if a level in the hierarchical structure has too many mass states. Here we present a memory efficient divide‐and‐recursively‐combine algorithm to do the calculation, which also improves the truncation method used in the previous hierarchical algorithm. Instead of treating all of the elements in a molecule as a whole, the new algorithm first ‘strips’ each element one by one. For the mass states of each element, a hierarchical structure is established and kept in the memory. This process reduces the memory usage by orders of magnitude (e.g., for bovine insulin, memory can be reduced from gigabytes to kilobytes). Next, a recursive algorithm is applied to combine mass states of elements to mass states of the whole molecule. The algorithm described above has been implemented as a computer program called Isotope Calculator, which was written in C++. It is freely available under the GNU Lesser General Public License from http://www.cs.brandeis.edu/~hong/software.html or http://people.brandeis.edu/~agar . Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   
6.
This work presents the synthesis and characterization of a novel compound, 4-(thiophene-3-ylmethoxy)phthalonitrile (TMP). The spectroscopic properties of the compound were examined by FT-IR, FT-Raman, NMR, and UV techniques. FT-IR and FT-Raman spectra in solid state were observed in the region 4000–400 cm−1 and 3500–50 cm−1, respectively. The 1H and 13C NMR spectra were recorded in CDCl3 solution. The UV absorption spectrum of the compound that dissolved in THF was recorded in the range of 200–800 nm. The structural and spectroscopic data of the molecule in the ground state were calculated using density functional theory (DFT) employing B3LYP exchange correlation and the 6-311++G(d,p) basis set. The vibrational wavenumbers were calculated and scaled values were compared with experimental FT-IR and FT-Raman spectra. The complete assignments were performed on the basis of the experimental results and total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. Isotropic chemical shifts (13C NMR and 1H NMR) were calculated using the gauge-invariant atomic orbital (GIAO) method. A study on the electronic properties, such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The HOMO and LUMO analyses have been used to elucidate information regarding charge transfer within the molecule. Comparison of the calculated frequencies, NMR chemical shifts, absorption wavelengths with the experimental values revealed that DFT method produces good results.  相似文献   
7.
In this work, FT-IR and FT-Raman spectra of 1-methoxynapthalene (C(11)H(10)O) have been reported in the regions 4000-400 cm(-1) and 3500-100 cm(-1), respectively. Density functional method (DFT) has been used to calculate the optimized geometrical parameters, atomic charges, vibrational wavenumbers and intensity of the vibrational bands. The vibrational frequencies have been calculated and scaled values are compared with experimental FT-IR and FT-Raman spectra. The structure optimizations and normal coordinate force field calculations are based on density functional theory (DFT) method with B3LYP/3-21G, B3LYP/6-31G, B3LYP/6-31G(d,p) and B3LYP/6-311++G(d,p) basis sets. The complete vibrational assignments of wavenumbers are made on the basis of potential energy distribution (PED). The optimized geometric parameters are compared with experimental values of naphthoic acid. The results of the calculation shows excellent agreement between experimental and calculated frequencies in B3LYP/6-311++G(d,p) basis set. The effects due to the substitutions of methyl group and carbon-oxygen bond are also investigated. A study on the electronic properties, such as excitation energies and wavelengths, were performed by time-dependent DFT (TD-DFT) approach. HOMO and LUMO energies are calculated that these energies show charge transfer occurs within the molecule.  相似文献   
8.
The FT-IR and FT-Raman vibrational spectra of 2,3-naphthalenediol (C(10)H(8)O(2)) have been recorded using Bruker IFS 66V spectrometer in the range of 4000-100 cm(-1) in solid phase. A detailed vibrational spectral analysis has been carried out and the assignments of the observed fundamental bands have been proposed on the basis of peak positions and relative intensities. The optimized molecular geometry and vibrational frequencies in the ground state are calculated by using the ab initio Hartree-Fock (HF) and DFT (LSDA and B3LYP) methods with 6-31+G(d,p) and 6-311+G(d,p) basis sets. There are three conformers, C1, C2 and C3 for this molecule. The computational results diagnose the most stable conformer of title molecule as the C1 form. The isotropic computational analysis showed good agreement with the experimental observations. Comparison of the fundamental vibrational frequencies with calculated results by HF and DFT methods. Comparison of the simulated spectra provides important information about the capability of computational method to describe the vibrational modes. A study on the electronic properties, such as absorption wavelengths, excitation energy, dipole moment and Frontier molecular orbital energies, are performed by time dependent DFT approach. The electronic structure and the assignment of the absorption bands in the electronic spectra of steady compounds are discussed. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. On the basis of the thermodynamic properties of the title compound at different temperatures have been calculated. The statistical thermodynamic properties (standard heat capacities, standard entropies, and standard enthalpy changes) and their correlations with temperature have been obtained from the theoretical vibrations.  相似文献   
9.
The spectroscopic properties of the crystallized nonlinear optical molecule L-histidinium bromide monohydrate (abbreviated as L-HBr-mh) have been recorded and analyzed by FT-IR, FT-Raman and UV techniques. The equilibrium geometry, vibrational wavenumbers and the first order hyperpolarizability of the crystal were calculated with the help of density functional theory computations. The optimized geometric bond lengths and bond angles obtained by using DFT (B3LYP/6-311++G(d,p)) show good agreement with the experimental data. The complete assignments of fundamental vibrations were performed on the basis of the total energy distribution (TED) of the vibrational modes, calculated with scaled quantum mechanics (SQM) method. The natural bond orbital (NBO) analysis confirms the occurrence of strong intra and intermolecular N-H?O hydrogen bonding.  相似文献   
10.
FT-IR and FT-Raman (4000–100 cm−1) spectral measurements of 3-methyl-1,2-butadiene (3M12B) have been attempted in the present work. Ab-initio HF and DFT (LSDA/B3LYP/B3PW91) calculations have been performed giving energies, optimized structures, harmonic vibrational frequencies, IR intensities and Raman activities. Complete vibrational assignments on the observed spectra are made with vibrational frequencies obtained by HF and DFT (LSDA/B3LYP/B3PW91) at 6-31G(d,p) and 6-311G(d,p) basis sets. The results of the calculations have been used to simulate IR and Raman spectra for the molecule that showed good agreement with the observed spectra. The potential energy distribution (PED) corresponding to each of the observed frequencies are calculated which confirms the reliability and precision of the assignment and analysis of the vibrational fundamentals modes. The oscillation of vibrational frequencies of butadiene due to the couple of methyl group is also discussed. A study on the electronic properties such as HOMO and LUMO energies, were performed by time-dependent DFT (TD-DFT) approach. The calculated HOMO and LUMO energies show that charge transfer occurs within the molecule. The thermodynamic properties of the title compound at different temperatures reveal the correlations between standard heat capacities (C) standard entropies (S), and standard enthalpy changes (H).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号