首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   27篇
  免费   0篇
化学   21篇
物理学   6篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   1篇
  2014年   4篇
  2013年   2篇
  2012年   2篇
  2011年   1篇
  2009年   2篇
  2008年   4篇
  2006年   3篇
  2004年   1篇
  2003年   1篇
  2001年   1篇
排序方式: 共有27条查询结果,搜索用时 15 毫秒
1.
2.
Despite the recent, successful efforts to detect mycotoxins, new methods are still required to achieve higher sensitivity, more simplicity, higher speed, and higher accuracy at lower costs. This paper describes the determination of ochratoxin A (OTA) using corona discharge ion mobility spectrometry (IMS) in the licorice root. A quick screening and measuring method is proposed to be employed after cleaning up the extracted OTA by immunoaffinity columns. The ion mobility spectrometer is used in the inverse mode to better differentiate the OTA peak from the neighboring ones. After optimization of the experimental conditions such as corona voltage, injection port temperature, and IMS cell temperature, a limit of detection (LOD) of 0.010 ng is obtained. Furthermore, the calibration curve is found to be in the range of 0.01-1 ng with a correlation coefficient (R2) of 0.988. Licorice roots were analyzed for their OTA content to demonstrate the capability of the proposed method in the quantitative detection of OTA in real samples.  相似文献   
3.
In this work, a new long-life alkali ion source is proposed that is based on alkali halide salts doped in nano-γ-alumina (Al2O3). Depending on the polarity, the ion source produces both alkali and halide ions. The source was characterized using different techniques such as scanning electron microscopy (SEM), transmission electron microscope (TEM), X-ray diffraction (XRD), fourier transform infrared (FT-IR), and ion mobility spectrometry (IMS). SEM images confirm a strong interaction between the alkali halide (MX) and nano-γ-alumina. The average particle size of the doped nanoparticles was calculated to be 44 nm by TEM. Formation of new phases (KAlCl2O and K3AlF6) was confirmed by XRD and that of Al–O–K group in the synthesized particles by FT-IR. Alkali and halide ion peaks were observed by IMS in the positive and negative modes, respectively. The lifetime of the ion source for different alkali halides was measured to range from 216 to 960 h. The total ion current emitted from the source was about 2 µA, while it was 12 nA at the collector plate of the IMS. Finally, application of the new source in ion mobility spectrometry was demonstrated by observing ion mobility spectra of compounds ionized via cation and anion attachment reaction.  相似文献   
4.
Tabrizchi M 《Talanta》2004,62(1):65-70
The separation efficiency of ion mobility spectrometry (IMS) may be measured in terms of either resolving power, based on a single-peak definition, or peak-to-peak resolution, based on the separation of pairs of adjacent peaks. Usually resolving power decreases with temperature. However, the experimental results show that the peak-to-peak resolution may be increased in some cases. Negative ion mobility spectra of halide ions are better resolved at elevated temperatures. In addition, the peaks corresponding to protonated monomer of amylacetate and the proton-bound dimer of ethylacetate are well separated at 100 °C while they fully overlap at 18 °C. This paper focuses on the effect of temperature on peak-to-peak resolution. It was also observed that in some cases peak-to-peak resolution decreases with temperature. Examples are the spectra of cyclohexanone and methyl-iso-butyl ketone (MIBK) as well as dimethyl methyl phosphonate (DMMP) and MIBK. The increase or decrease in resolution at elevated temperatures has been attributed to the changes in separation factor (α) which is governed by the different hydration and clustering tendency of ions.  相似文献   
5.
Morphine and noscapine were determined using corona discharge ion mobility spectrometry. The detection limits were 5.6 × 10−11 and 6.7 × 10−11 g for morphine and noscapine, respectively. The linear dynamic ranges of the calibration plots for the compounds were about three orders of magnitude. The method has also been successfully applied for simultaneous determination of the compounds using the standard addition method.  相似文献   
6.
In this study, the capability of negative corona discharge ion mobility spectrometry (IMS) for quantitative magnitude of several explosives including 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN) and cyclo-1,3,5-trimethylene-2,4,6-trinitramine (RDX) has been evaluated for the first time. The total current obtained with the negative corona discharge was about 100 times larger than that of IMS based on 63Ni, which results in a lower detection limit and a wider linear dynamic range. The detection limits for PETN, TNT and RDX were 8×10−11, 7×10−11 and 3×10−10 g, respectively. The calibration plots for these explosives showed linear dynamic ranges of about four orders of magnitude.  相似文献   
7.
The capability of corona-discharge ion mobility spectrometry (CD-IMS) in the quantitative determination of acetone has been evaluated. Generally, in IMS the signal intensity of a product ion is not a linear function of the sample concentration. A linear calibration curve was, however, obtained by plotting ln(R0+/R0+-P+) against acetone concentration, where, R0+ is the original reactant ion density and P+ is the sum of all the product ion densities. The acetone detection limit was 60 ng m(-3) and its dynamic range was three orders of magnitude.  相似文献   
8.
The major reactant ion in conventional ion mobility spectrometry (IMS) is the hydronium ion, H3O+ which is produced in the usual ionization sources such as corona discharge or radioactive sources. Using the hydronium reactant ion, mostly the analytes with proton affinity higher than that of water are ionized. A broader range of compounds can be detected by IMS if other alternative ionization channels, such as charge transfer from NO+, are employed. In this work we introduce a simple and novel method for producing NO+ as the major reactant ion in IMS. This was achieved by adding neutral NO to the corona discharge ionization source. The neutral NO was prepared via an additional discharge in an air stream, flowing into the corona discharge source. A curtain plate was mounted in front of the corona discharge to prevent the influence of the analyte on the production of NO+. Using this technique, the reactant ion could easily and quickly switch between the H3O+ and NO+. The performance of the new source was evaluated by recording ion mobility spectra of test compounds with both H3O+ and NO+ reactant ions.  相似文献   
9.
Sodium lauryl sulfate (SLS) and sodium lauryl ether sulfate (SLES) are commonly used in many dishwashing liquids. These chemicals are adsorbed on the dish surface during the washing process and then transferred to food or drink in the cooking process. In this work, the adsorption of SLS and SLES on different dish surfaces in aqueous solution was studied. Stainless steel, copper, aluminum, Pyrex, Teflon and arcopal china ware were used in this study. The adsorbed chemical remained on the surface after rinsing was measured by thermal desorption using an ion mobility spectrometer as the detector. Although arcopal china ware showed the maximum amount of adsorption, and Pyrex and stainless steel dishes showed the minimum amount of residual chemical, the results showed that the amount of adsorbed chemicals on dish surfaces is less than 428 ng.cm?2, which is well below the health risk dosage. The released SLS and SLES from dish surfaces into cold or hot water were also measured and compared for different dishes.  相似文献   
10.
Dichlorodiphenyl trichloroethane (DDT) as an organochlorine compound has been globally used as a pesticide for controlling soil-dwelling insects and treating diseases such as malaria and typhus. The degradation products of DDT and its metabolites have also negative effects on the environment. The present study has investigated the determination of DDT and its metabolites in water sample using ion mobility spectrometry (IMS) as a rapid and sensitive detection technique. For this purpose, DDT and its metabolites were extracted using reverse phase solid-phase extraction (SPE) from water samples. The samples were then recovered by eluting with methanol and finally, quantified using the corona discharge IMS technique. Injection and oven temperatures and the effect of dopant were optimized as experimental parameters influencing both detection and determination efficiencies. Degradation of DDT in IMS drift tube was studied and reduced mobility values of DDT and its metabolites were calculated. The developed method was validated using water sample to obtain good results for the determination of DDT at low levels (1 ng ml?1) while spiked recoveries were obtained to be between 95.0–96.7%. The proposed method based on IMS proved to be a simple, inexpensive, rapid and sensitive procedure for the fast monitoring and determination of DDT and its main metabolites in water sample.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号