首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
物理学   1篇
  2016年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
This work reports the novel contribution of chlorophyll b as natural anthocyanin co-pigment in unpurified black rice extract for improved electron transport and performance of natural dye-sensitized solar cell. The dyes are extracted as prominent photosensitizers by considering the concentration, the dye electronic structure, the extraction, and immersion time. The anthocyanin dye containing 1.92 mM cyanidin-3-O-glucoside structure has been extracted without purification. Interestingly, 0.33 mM chlorophyll b is found as a natural co-sensitizer in unpurified anthocyanin. The role of chlorophyll b supporting the electron transfer of anthocyanin dye will be investigated for improved cell performance. Both purified and unpurified dyes are compared in the same anthocyanin concentration. The combined Tauc plot and voltametric method will be conducted to show the interfacial electronic band edges of TiO2-dye-electrolyte. Electrochemical impedance spectroscopy method will investigate electron transfer dynamic in both cell systems. As a result, chlorophyll b has dominantly acted as two intermediate states in boosting electron injection and dye regeneration to improve cell efficiency from 1.31 to 2.17 % due to the narrower LUMO–TiO2 conduction band gap and the narrower HOMO-iodide (I ?) potential gap, respectively. According to the electron transport, the co-sensitizer contributes to the smaller transport resistance (R t?=?21.9 Ω), the higher chemical diffusion coefficient (Dn?=?1.696?×?10?3 cm2/s), the higher chemical capacitance (Cμ?=?14.32 μF), and the faster electron transport (τd?=?39.88 μs).  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号